Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1162–1174 | Cite as

Designing a Novel Graphitic White Iron for Metal-to-Metal Wear Systems

  • Jie Wan
  • Jingjing Qing
  • Mingzhi XuEmail author
Article
  • 143 Downloads

Abstract

Metal-to-metal wear systems are widely used in various industries, but heat-induced adhesive wear has been limiting the lifetime of the components for many years. An idea of introducing interconnected flake graphite networks into white iron was developed by the authors, which can potentially solve this problem by increasing the overall thermal conductivity. To optimize the thermal conductivity and wear resistance, five alloys with different chromium and carbon contents were designed, produced, and investigated to develop the first generation of graphitic white iron. Mathematical models were developed to correlate the graphite phase concentration and cooling rate with carbon equivalent. It was shown that graphite volume percent needs to be higher than 7 pct to have a consistent thermal conductivity increase. Hardness model developed in this article suggested that M7C3 has a higher hardness than the plate cementite, and hardness increases with increasing chromium content in the carbides. The as-solidified microstructure was characterized using a SEM, and solidification sequence was established for this novel alloy system. Unexpectedly, for the first time, study of alloy with 11 wt pct Cr shows that M7C3 was formed during eutectic reaction and then transformed into cementite at a lower temperature.

Notes

Acknowledgments

This work was financially supported by Caterpillar Inc. The authors are grateful for the technical discussion with Dr. David C. Van Aken. Perrin W. Habecker is acknowledged for his assistance with the experiments and sample preparations. The FEI Helios NanoLab EBSD was obtained with a Major Research Instrumentation grant from the National Science Foundation under contract DMR-0723128.

References

  1. 1.
    D. M. Stefanescu: ASM Handbook, 10th ed., ASM International, Ohio, 1990, pp. 3-11.Google Scholar
  2. 2.
    [2] H. Berns and W. Theisen: Ferrous Materials, 1st ed., Springer- Verlag Berlin Heidelberg, 2008, pp. 103.Google Scholar
  3. 3.
    R. B. Gundlach: ASM Handbook, ASM International, Ohio, 2008, pp. 896-903.Google Scholar
  4. 4.
    [4] M. Mohammadnezhad, V. Javaheri, M. Shamanian, M. Naseri and M. Bahrami: Materials & Design, 2013, vol. 49, pp. 888-893.CrossRefGoogle Scholar
  5. 5.
    [5] M. Filipovic, Z. Kamberovic and M. Korac: Materials Transactions, 2011, vol. 52, pp. 386-390.CrossRefGoogle Scholar
  6. 6.
    [6] A. Bedolla-Jacuinde, M. W. Rainforth and I. Mejia: Metall. Trans. A, 2013, vol 44, pp. 856-872.CrossRefGoogle Scholar
  7. 7.
    [7] Z. F. Huang, J. D. Xing, X. H. Zhi and Y. M. Gao: Materials Science and Technology, 2014, vol. 27, pp. 426-430.CrossRefGoogle Scholar
  8. 8.
    W.T. Yu, J. Li, C.B. Shi, and Q.T. Zhu: Metals, 2016, vol. 6, art. no. 193.Google Scholar
  9. 9.
    [9] X. H. Zhi, J. D. Xing, H. G. Fu and Y. M. Gao: Materials Characterization, 2008, vol. 59, pp. 1221-1226.CrossRefGoogle Scholar
  10. 10.
    [10] A. Bedolla-Jacuinde, R. Correa, J. G. Quezada and C. Maldonado: Materials Science and Engineering A, 2005, vol. 398, pp. 297-308.CrossRefGoogle Scholar
  11. 11.
    [11] X. J. Wu, J. D. Xing, H. G. Fu and X. H. Zhi: Materials Science and Engineering A, 2007, vol. 457, pp. 180-185.CrossRefGoogle Scholar
  12. 12.
    [12] M. E. Maja, M. G. Maruma, L. A. Mampuru and S. J. Moema: Journal of the Southern African Institute of Mining and Metallurgy, 2016, vol. 116, pp. 981-986.CrossRefGoogle Scholar
  13. 13.
    Annual Book of ASTM Standards, ASTM Designation A247-17, ASTM, 2017.Google Scholar
  14. 14.
    C. V. White: Metals Handbook, 10th ed., ASM International, Ohio, 1990, pp. 12-32.Google Scholar
  15. 15.
    [15] W. L. Guesser, I. Masiero, E. Melleras and C. S. Cabezas: Revista Materia, 2005, vol. 10, pp. 265-272.Google Scholar
  16. 16.
    [16] D. Holmgren: International Journal of Cast Metals Research, 2013, vol. 18, pp. 331-345.CrossRefGoogle Scholar
  17. 17.
    [17] I. G. Chen and D. M. Stefanescu: AFS Transaction, 1984, vol. 92, pp. 947-964.Google Scholar
  18. 18.
    [18] J. M. Frost and D. M. Stefanescu: AFS Transaction, 1992, vol. 100, pp. 189-200.Google Scholar
  19. 19.
    [19] D. Emadi, L. V. Whiting, S. Nafisi and R. Ghomashchi: Journal of Thermal Analysis and Calorimetry, 2005, vol. 81, pp. 235-242.CrossRefGoogle Scholar
  20. 20.
    [20] A. Gaard, N. Hallback, P. Krakhmalev and J. Bergstrom: Wear, 2010, vol. 268, pp. 968-975.CrossRefGoogle Scholar
  21. 21.
    [21] P. C. Okonkwo, G. Kelly, B. F. Rolfe and M. P. Pereira: Wear, 2012, vol. 282-283, pp. 22-30.CrossRefGoogle Scholar
  22. 22.
    [22] J. Krawczyk and J. Pacyna: Metallurgy and Foundry Engineering, 2009, vol. 35, pp. 101-110.CrossRefGoogle Scholar
  23. 23.
    J. Krawczyk and J. Pacyna: 18th International Conference on Metallurgy and Materials, 2009, pp. 19–21.Google Scholar
  24. 24.
    [24] J. Krawczyk and J. Pacyna: Archives of Foundry Engineering, 2010, vol. 10, pp. 45-50.Google Scholar
  25. 25.
    [25] J. J. Coronado, A. Gomez and A. Sinatora: Wear, 2009, vol. 267, pp. 2070-2076.CrossRefGoogle Scholar
  26. 26.
    [26] J. J. Coronado and A. Sinatora: Wear, 2009, vol. 267, pp. 2077-2082.CrossRefGoogle Scholar
  27. 27.
    J.J. Coronado, S.A. Rodriguez, C.E.K. Mady, and A. Sinatora: ABRASION 2008—Proceedings of the 3rd International Conference on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, University of Trento, Italy, 2008, pp. 212–21.Google Scholar
  28. 28.
    D. C. Van Aken and W. F. Hosford: Reporting Results: A Practical Guide for Engineers and Scientists, 1st ed., Cambridge University, Cambridge, 2008, pp. 87-91.CrossRefGoogle Scholar
  29. 29.
    [29] M. D. Hecht, B. A. Webler and Y. N. Picard: Metall. Trans. A, 2018, vol. 49, pp. 2161-2172.CrossRefGoogle Scholar
  30. 30.
    M. Bruneau, C.M. Uang and A. S. Whittaker: Ductile design of steel structures, 1st ed., McGraw-Hill Education, New York, 1998.Google Scholar
  31. 31.
    A. A. Zhukov: Theoretical Foundations of Graphitization of Cast Iron and Formation of Structure in Preforms, Mashinostroenie, Moscow, 1978.Google Scholar
  32. 32.
    [32] S. Q. Ma, J. D. Xing, Y. L. He, Y. F. Li, Z. F. Huang, G. Z. Liu and Q. J. Geng: Materials Chemistry and Physics, 2015, vol. 161, pp. 65-73.CrossRefGoogle Scholar
  33. 33.
    L. Sha, Y.F. Zhou, X.L. Xing, J.B. Wang, X.J. Ren, and Q.X. Yang: Sci. Rep., 2016, vol. 6, pp. 32941–46.CrossRefGoogle Scholar
  34. 34.
    [34] D. A. Skobir, F. Vodopivec, M. Jenko, S. Spaic and B. Markoli: Z. fur Metall., 2004, vol. 95, pp. 1020-1024.CrossRefGoogle Scholar
  35. 35.
    [35] A. Inoue and T. Masumoto: Metallurgical Transaction A, 1980, vol. 11, pp. 739-747.CrossRefGoogle Scholar
  36. 36.
    Annual Book of ASTM Standards, ASTM Designation E92-17, ASTM, 2017.Google Scholar
  37. 37.
    [37] S. R. Wang, L. H. Song, Y. Qiao and M. Wang: Tribology Letters, 2013, vol. 50, pp. 439-448.CrossRefGoogle Scholar
  38. 38.
    [38] J. J. Coronado: Wear, 2011, vol. 270, pp. 287-293.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Missouri University of Science and TechnologyRollaUSA
  2. 2.Georgia Southern UniversityStatesboroUSA

Personalised recommendations