Advertisement

A Study on the Impact of Substituents in 58S Bioglass and Their Corrosion-Resistant Property on Surgical Grade Metal Substrate

  • Likha Chandran
  • A. M. BallamuruganEmail author
Article
  • 54 Downloads

Abstract

The salient features of cost-effectiveness, ease of fabrication, and excellent mechanical stability offer the importance of surgical grade 316L SS in bone replacement surgery. Despite the salient features, corrosion during in vivo implantation restricts the application of 316L SS. In this context, bio-ceramic coatings on metallic implants are highly preferred as it protects the underlying metal from corrosion and also accomplish good interfacial bonding between the metal substrate and the defective bone. Here in, a novel Sr/Mg-substituted 58S bioglass coating on 316L SS is developed. Sol–gel technique is employed for the synthesis of bioglass powders and their subsequent coatings on 316L SS are performed through electrophoretic deposition. The physiochemical and electrochemical characterization of the coatings were evaluated through suitable analytical techniques. The important electrochemical corrosion parameters such as corrosion current density (Icorr) and corrosion potential (Ecorr) were investigated in simulated body fluid conditions. The results envisaged the significant electrochemical shift towards the noble direction for the coated specimens than the uncoated substrate. The stability of the coatings is confirmed from the high polarization resistance and low capacitance values.

Graphical Abstract

Notes

Acknowledgment

The authors acknowledge the major support from the Indian Council of Medical Research (ICMR) [Ref No: 35//14/2011-BMS], University Grants Commission for Special Assistance Programme (UGC-SAP), Department of Science and Technology (DST-FIST, DST PURSE), New Delhi, India.

References

  1. 1.
    H.J. Lopes, E.M.B Fonseca, I.O. Mazali, A. Magalhãe, R. Landers and C.A. Bertran, Mater. Sci. Eng. C, 2017, 72, 86–97CrossRefGoogle Scholar
  2. 2.
    D. Davies, Nat. Rev. Drug Discov., 2003, 2, 114–122.CrossRefGoogle Scholar
  3. 3.
    S. B. Goodman, Z. Yao, M. Keeney, and F. Yang, Biomaterials, 2013, 34, 3174–3183.CrossRefGoogle Scholar
  4. 4.
    A. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochim. Acta, 2009, 54, 1192–1198CrossRefGoogle Scholar
  5. 5.
    L. L. Hench and J. Wilson, Science, 1986, 226, 630CrossRefGoogle Scholar
  6. 6.
    I.D. Xynos, A.J. Edgar, L.D.K Buttery, L.L. Hench, and J.M. Polak. Biochem. Biophys. Res. Commun., 2000, 276, 461-465CrossRefGoogle Scholar
  7. 7.
    I. D. Xynos, M. V. J. Hukkanen, J. J. Batten, L. D. Buttery, L.L. Hench and J.M. Polak. Calcif. Tissue Int., 2000, 67, 321-329.CrossRefGoogle Scholar
  8. 8.
    J. Zhong and D.C. Greenspan. J. Biomed. Mater. Res., 2000, 53, 694.CrossRefGoogle Scholar
  9. 9.
    M. Hamadouche, A. Meunier, D. C. Greenspan, C. Blanchat, J.P. Zhong, G.P. LaTorre, J. Biomed. Mater. Res., 2001, 54, 560-566.CrossRefGoogle Scholar
  10. 10.
    M. Ogino, F. Ohuchi and L.L. Hench, J Biomed Mater Res.1980, 14, 55-64.CrossRefGoogle Scholar
  11. 11.
    C. Wu, W. Fan, M. Gelinsky, Y. Xiao, P. Simon, R. Schulze, T. Doert, Y. Luo, and G. Cuniberti, Acta Biomater.,2011, 7, 1797-1806CrossRefGoogle Scholar
  12. 12.
    E. Dietrich, H. Oudadesse, A. Lucas-Girot and M. Mami, J. Biomed. Mater. Res., Part A, 2009, 88, 1087–1096.CrossRefGoogle Scholar
  13. 13.
    P.J. Marie, P. Ammann, G. Boivin and C. Rey, Calcif Tissue Int,2001,69,121–9CrossRefGoogle Scholar
  14. 14.
    K. Qiu, X.J. Zhao, C. X. Wan, C.S. Zhao and Y. W. Chen, Biomaterials,2006, 27, 1277–86.CrossRefGoogle Scholar
  15. 15.
    E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri and G. Logroscino, Acta Biomater, 2007, 3, 961–9.CrossRefGoogle Scholar
  16. 16.
    C. Wu, Y.Ramaswamy, D. Kwik and H. Zreiqat, Biomaterials, 2007, 28, 3171–81.CrossRefGoogle Scholar
  17. 17.
    J. Lao, E. Jallot and J.M Nedelec, Chem Mater, 2008, 20, 4969–73.CrossRefGoogle Scholar
  18. 18.
    E. Gentleman, Y.C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M.D. O’Donnell, R.G.Hill, Biomaterials, 2010, 31, 3949–56.CrossRefGoogle Scholar
  19. 19.
    L. Besra and M. Liu, Prog Mater Sci, 2007, 52, 1–61.CrossRefGoogle Scholar
  20. 20.
    F. Pishbin, A. Simchi, M.P.Ryan, A.R. Boccaccini, Surf. Coat. Tech, 2011, 205, 5260– 5268.CrossRefGoogle Scholar
  21. 21.
    F. Pishbin, V. Mouriño, J.B. Gilchrist, D.W. McComb, S. Kreppel, V. Salih, M.P. Ryan, A.R. Boccaccini, Acta Biomater., 2013, 9, 7469-7479.CrossRefGoogle Scholar
  22. 22.
    S. Kannan, A.Balamurugan, S.Rajeswari, Electrochimica Acta, 2005, 50, 2065–2072.CrossRefGoogle Scholar
  23. 23.
    T. Kokubo and H.Takadama,Biomaterials,2006,27, 2907–2915.CrossRefGoogle Scholar
  24. 24.
    S. Nagarajan and N. Rajendran, Applied Surface Science, 2009, 255, 3927–3932.CrossRefGoogle Scholar
  25. 25.
    S. Labbaf, O. Tsigkou, K.H. Muller, M.M. Stevens, A.E. Porter and J.R. Jones. Biomaterials, 2011, 32, 1010–8.CrossRefGoogle Scholar
  26. 26.
    G.M. Luz and J.F Mano, Nanotechnology,2011, 22,494014.CrossRefGoogle Scholar
  27. 27.
    J. Serra,P. Gonzalez,S. Liste, S. Chiussi, B. Leon and M. Perezamor,Journal of Materials Science: Materials in Medicine,2002, 13, 1221-1225.Google Scholar
  28. 28.
    J. Marchi, D.S. Morais, J.Schneider, J.C. Bressiani and A.H.A. Bressiani.Journal of Non - Crystalline Solids, 2005, 351, 863- 868.CrossRefGoogle Scholar
  29. 29.
    M. Wang, J. Cheng, M. Li and F. He. Physica B, 2011, 406, 187-191.CrossRefGoogle Scholar
  30. 30.
    Z. Huan and J.Chang, J. Mater. Sci. Mater. Med., 2008, 19, 2913-8CrossRefGoogle Scholar
  31. 31.
    Y.F. Goh, A.Z.Alshemary, M. Akram, M.R.A.Kadir, and R. Hussain,Materials Chemistry and Physics,2013,137,1031-1038.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Nanoscience and TechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations