Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1153–1161 | Cite as

Isothermal Transformation of γ-Co to ε-Co in Stellite 6 Coatings

  • Dezhi Yang
  • Chen Hua
  • Shengzhi Qu
  • Jijin Xu
  • Junmei Chen
  • Chun YuEmail author
  • Hao LuEmail author
Article
  • 71 Downloads

Abstract

Stellite 6 alloy coatings were produced by the plasma arc cladding process, and the as-cladded samples were treated with isothermal aging at 700 °C for up to 1000 hours to evaluate the effect of long-term isothermal aging on microstructural evolution. The results show that the microstructure of the cladding consists of γ-Co solid solution and carbide-based eutectics. During aging, γ-Co gradually transformed to ε-Co, and the volume fraction of ε-Co reached to about 75 pct as the aging time was 1000 hours. On other hand, the M23C6 fine particles were found to gradually precipitate in the solid solution during aging. Approximately pairwise proportional relationships were found among the fraction of precipitated M23C6 carbides, the volume fraction of martensite transformation, and the stacking fault energy, and they were verified by the statistical results of phase fraction and change of SF possibility calculated through X-ray diffraction patterns. A kinetic model for martensite transformation was also established to explain the change of martensite volume fraction during the aging period and to predict the transformation degree during high-temperature aging.

Notes

Acknowledgments

This work was supported by the financial funding of the National Natural Science Foundation of China (Grant Nos. 51875354 and 51575347).

References

  1. 1.
    R. Arabi Jeshvaghani, M. Shamanian, and M. Jaberzadeh: Mater. Des., 2011, vol. 32, pp. 2028–33.CrossRefGoogle Scholar
  2. 2.
    A. Farnia, F. Malek-Ghaini, J.C. Rao, V. OcelÍk, and J.T.M. De Hosson: Surf. Coat. Technol., 2012, vol. 213, pp. 278–84.CrossRefGoogle Scholar
  3. 3.
    K.P. Rao, R. Damodaram, H.K. Rafi, G.D.J. Ram, G.M. Reddy, and R. Nagalakshmi: Mater. Charact., 2012, vol. 70, pp. 111–16.CrossRefGoogle Scholar
  4. 4.
    A. Khoddamzadeh, R. Liu, M. Liang, and Q. Yang: Mater. Des., 2014, vol. 56, pp. 487–94.CrossRefGoogle Scholar
  5. 5.
    J.B.V. Sande, J.R. Coke, and J. Wulff: Metall. Trans., 1976, vol. 7, pp. 389–97.CrossRefGoogle Scholar
  6. 6.
    A.L. Ramirez-Ledesma, E. Lopez-Molina, H.F. Lopez, and J.A. Juarez-Islas: Acta Mater., 2016, vol. 111, pp. 138–47.CrossRefGoogle Scholar
  7. 7.
    H.F. Lopez and A.J. Saldivar-Garcia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 8–18.CrossRefGoogle Scholar
  8. 8.
    Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, and Y. Li: Acta Mater., 2013, vol. 61 (5), pp. 1648–61.CrossRefGoogle Scholar
  9. 9.
    S. Zangeneh, H.R. Lashgari, M. Saghafi, and M. Karshenas: J. Mater. Sci. Eng. A, 2010, vol. 527, pp. 6494–6500.CrossRefGoogle Scholar
  10. 10.
    A.J. Saldívar-Garcia and H.F. López: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2517–23.CrossRefGoogle Scholar
  11. 11.
    P. Khaimanee, P. Choungthong, and V. Uthaisangsuk: J. Mater. Eng. Perform., 2017, vol. 26, pp. 955–68.CrossRefGoogle Scholar
  12. 12.
    H.U. Hong, B.S. Rho, and S.W. Nam: J. Mater. Sci. Eng. A, 2001, vol. 318, pp. 285–92.CrossRefGoogle Scholar
  13. 13.
    P.A. Beaven, P.R. Swann, and D.R.F. West: J. Mater. Sci., 1979, vol. 14, pp. 354–64.CrossRefGoogle Scholar
  14. 14.
    K.J. Bhansali and A.E. Miller: Wear, 1982, vol. 75, pp. 241–52.CrossRefGoogle Scholar
  15. 15.
    P.J. Ferreira and P. Müllner: Acta Mater., 1999, vol. 46, pp. 4479–84.CrossRefGoogle Scholar
  16. 16.
    G.B. Olson and W.S. Owen: Martensite, 1st ed., ASM International, Materials Park, OH, 1992, pp. 197–226.Google Scholar
  17. 17.
    M. Sage and C. Gillaud: Rev. Metall., 1950, vol. 49, pp. 139–45.CrossRefGoogle Scholar
  18. 18.
    R. Bauer, A. E. Jägle, W. Baumann, and E.J. Mittemeijer: Philos. Mag., 2011, vol. 91, pp. 437–57.CrossRefGoogle Scholar
  19. 19.
    C.A. Scheider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.CrossRefGoogle Scholar
  20. 20.
    A. Boyde, P.G. Howell, and S.J. Jones: J. Microsc., 2011, vol. 101(3), pp. 261–66.CrossRefGoogle Scholar
  21. 21.
    C.T. Sims: JOM, 1969, vol. 21, pp. 27–42.CrossRefGoogle Scholar
  22. 22.
    M.N. Shetty: Ind. Crops Prod., 2013, vol. 45, pp. 141–47.CrossRefGoogle Scholar
  23. 23.
    X.Y. Cui, H.W. Yen, S.Q. Zhu, R. Zheng, and S.P. Ringer: J. Alloys Compd., 2015, vol. 620, pp. 38–41.CrossRefGoogle Scholar
  24. 24.
    Y.F. Wu, S. Li, Z.G. Ding, W. Liu, Y.H. Zhao, and Y.T. Zhu: Scripta Mater., 2016, vol. 112, pp. 337-46.CrossRefGoogle Scholar
  25. 25.
    L. Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, and L. Vitos: Acta Mater., 2017, vol. 136, pp. 215–23.CrossRefGoogle Scholar
  26. 26.
    Y.N. Petrov and I. Yakubtsov: Phys. Met. Metallogr., 1986, vol. 62, pp. 34–38.Google Scholar
  27. 27.
    F.B. Pickering: Proc. Conf. Stainless Steels, 1984, vol. 84, pp. 2–28.Google Scholar
  28. 28.
    S.J. Lee, H. Fujii, and K. Ushioda: J. Alloys Compd., 2018, vol. 749, pp. 776–82.CrossRefGoogle Scholar
  29. 29.
    Tae-Ho Lee, Heon-Young Ha, Byoungchul Hwang, Sung-Joon Kim, and Eunjoo Shin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4455–59.CrossRefGoogle Scholar
  30. 30.
    T. L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.-G. Yang: Comput. Mater. Sci., 2017, vol. 143, pp. 112–17.CrossRefGoogle Scholar
  31. 31.
    T.L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.-G. Yang: J. Alloys Compd., 2017, vol. 694, pp. 1265–79.CrossRefGoogle Scholar
  32. 32.
    M. Ghasri-Khouzan and J.R. McDermid: J. Mater. Sci. Eng. A, 2015, vol. 621, pp. 118–27.CrossRefGoogle Scholar
  33. 33.
    R.P. Reed and R.E. Schramm: J. Appl. Phys, 1974, vol. 45, pp. 4705–11.CrossRefGoogle Scholar
  34. 34.
    B.E. Warren: X-Ray Diffraction, 1st ed., Addison-Wesley Pub. Co., Boston, MA, 1969, p. 275.Google Scholar
  35. 35.
    Yonghua Rong and Gang He: J. Mater. Sci. Technol., 2002, vol. 18, pp. 459–61.Google Scholar
  36. 36.
    N. Saunders, X. Li, A.P. Miodownik, and J.P. Schillé: Mater. Des. Approaches Exper., 2001, vol. 32, pp. 185–97.Google Scholar
  37. 37.
    C.L. Magee: Metall. Trans., 1971, vol. 2, pp. 2419–30.CrossRefGoogle Scholar
  38. 38.
    S.R. Pati and M. Cohen: Acta Mater., 1969, vol. 17, pp. 189–99.CrossRefGoogle Scholar
  39. 39.
    N.N. Thadhani and M.A. Meyers: Progr. Mater. Sci., 1986, vol. 30, pp. 1–37.CrossRefGoogle Scholar
  40. 40.
    L. Wang, Y. Tian, Y. Yang, and P. Li: Xibei Gongye Daxue Xuebao, 1993, vol. 11, pp. 108–12.Google Scholar
  41. 41.
    J.W. Christian: Proc. R. Soc. A, 1951, vol. 206, pp. 51–64.Google Scholar
  42. 42.
    K.E. Easterling and A.R. Thölén: Acta Mater., 1976, vol. 24, pp. 333–41.CrossRefGoogle Scholar
  43. 43.
    G.B. Olson and M. Cohen: Annu. Rev. Mater. Res., 2003, vol. 11, pp. 1–32.Google Scholar
  44. 44.
    E. Polatidis, N. Zotov, E. Bischoff, and E.J. Mittemeijer: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1–13.Google Scholar
  45. 45.
    R. Turrubiates-Estrada, A. Salinas-Rodriguez, and H.F. Lopez: J. Mater. Sci., 2011, vol. 46, pp. 254–62.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Lab of Shanghai Laser Manufacturing and Materials Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Shanghai Boiler Works, Ltd.ShanghaiP.R. China

Personalised recommendations