Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 947–965 | Cite as

Ferrite Grain Refinement, Grain Size Distribution, and Texture After Thermomechanical Processing and Continuous Cooling of Low-C Steel

  • Sudipta PatraEmail author
  • Abhisek Mandal
  • Madhumanti Mandal
  • Vinod Kumar
  • Rahul Mitra
  • Debalay Chakrabarti


Single-pass and multi-pass deformation schedules were applied over 973 K to 1323 K (700 °C to 1050 °C) using a Gleeble® thermomechanical simulator to understand the effect of the number of deformation passes, strain per pass, and interpass interval on ferrite grain refinement, particularly for the formation of an ultrafine ferrite grain structure (ULFG) with favorable high-angle grain boundaries and texture components. The microstructure, texture, and grain boundaries were characterized using SEM and EBSD. In the single-pass schedule, a decrease in deformation temperature from 1323 K to 1073 K (1050 °C to 800 °C) refined the ferrite grain size from 9.5 to 2.0 μm and intensified the beneficial γ-fiber (〈111〉//ND) texture. The ferrite grain size remained unchanged, whereas Cube and Goss texture strengthened with a further decrease in deformation temperature to 973 K (700 °C). For the multi-pass schedule at 1073 K (800 °C), where the total deformation was applied in three successive passes with 10-second interpass time, an ULFG structure was also developed with 2.5 μm grain size. Grain growth during the interpass intervals weakened the texture in the multi-pass deformed samples compared to that of the single-pass deformed samples. The evolution of microstructure and texture has been explained considering that restoration mechanisms (recrystallization, grain growth, and phase transformation) acted during and after deformation. Finally, ferrite grain refinement during different processing schedules was predicted using a simple mathematical approach based on the experimental data, with suggestions for future improvements.



The authors would like to acknowledge RDCIS, SAIL (Ranchi) for providing the research material and offering the Gleeble 3500® testing facility. Facilities developed under Institute SGDRI-2015 grant from IIT Kharagpur deserves special mention. Technical support received for SEM and EBSD at Central Research Facility of IIT Kharagpur is gratefully acknowledged. Authors are grateful to Professor Claire Davis, WMG, The University of Warwick for her valuable time and effort in the final correction of the manuscript.


  1. 1.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, 441, vol. 441.CrossRefGoogle Scholar
  2. 2.
    R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.CrossRefGoogle Scholar
  3. 3.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.CrossRefGoogle Scholar
  4. 4.
    K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2145–59.CrossRefGoogle Scholar
  5. 5.
    P.D. Hodgson, A. Shokouhi, and H. Beladi: ISIJ Int., 2008, vol. 48, pp. 1046–9.CrossRefGoogle Scholar
  6. 6.
    A. Shokouhi and P.D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1233–42.CrossRefGoogle Scholar
  7. 7.
    A. Shokouhi and P.D. Hodgson: Mater. Sci. Technol., 2009, vol. 25, pp. 29–34.CrossRefGoogle Scholar
  8. 8.
    C. Zheng, N. Xiao, L. Hao, D. Li, and Y. Li: Acta Mater., 2009, vol. 57, pp. 2956–68.CrossRefGoogle Scholar
  9. 9.
    S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.CrossRefGoogle Scholar
  10. 10.
    N. Tsuji, R. Ueji, and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 69–76.CrossRefGoogle Scholar
  11. 11.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958–64.CrossRefGoogle Scholar
  12. 12.
    R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Acta Mater., 2002, vol. 50, pp. 4177–89.CrossRefGoogle Scholar
  13. 13.
    T. Furuhara, T. Mizoguchi, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 392–8.CrossRefGoogle Scholar
  14. 14.
    H. Beladi, G.L. Kelly, and P.D. Hodgson: Int. Mater. Rev., 2007, vol. 52, pp. 14–28.CrossRefGoogle Scholar
  15. 15.
    P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.CrossRefGoogle Scholar
  16. 16.
    M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1019–26.CrossRefGoogle Scholar
  17. 17.
    B. Eghbali and A. Abdullah-Zadeh: Scr. Mater., 2006, vol. 54, pp. 1205–9.CrossRefGoogle Scholar
  18. 18.
    H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38, pp. 450–63.CrossRefGoogle Scholar
  19. 19.
    H. Dong and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269–76.CrossRefGoogle Scholar
  20. 20.
    T. Morimoto, F. Yoshida, I. Chikushi, and J. Yanagimoto: ISIJ Int., 2007, vol. 47, pp. 1475–84.CrossRefGoogle Scholar
  21. 21.
    M. Etou, S. Fukushima, T. Sasaki, Y. Haraguchi, K. Miyata, M. Wakita, T. Tomida, N. Imai, M. Yoshida, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1142–7.CrossRefGoogle Scholar
  22. 22.
    R. Barbosa, D.B. Santos, and R.E. Lino: Mater. Sci. Forum, 2007, vol. 558–559, pp. 471–8.CrossRefGoogle Scholar
  23. 23.
    S. Patra, S. Neogy, V. Kumar, D. Chakrabarti, and A. Haldar: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4296–310.CrossRefGoogle Scholar
  24. 24.
    A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44, pp. 4106–18.CrossRefGoogle Scholar
  25. 25.
    G. Glover and C.M. Sellars: Metall. Trans., 1973, vol. 4, pp. 765–75.CrossRefGoogle Scholar
  26. 26.
    S.V.S.N. Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Scr. Mater., 2005, vol. 53, pp. 763–8.CrossRefGoogle Scholar
  27. 27.
    S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Mater. Sci. Eng. A, 2007, vol. 457, pp. 162–8.CrossRefGoogle Scholar
  28. 28.
    Y. Adachi, M. Wakita, H. Beladi, and P.D. Hodgson: Acta Mater., 2007, vol. 55, pp. 4925–34.CrossRefGoogle Scholar
  29. 29.
    Y. Adachi, P.G. Xu, and Y. Tomota: ISIJ Int., 2008, vol. 48, pp. 1056–62.CrossRefGoogle Scholar
  30. 30.
    H. Beladi, I.B. Timokhina, S. Mukherjee, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 4186–96.CrossRefGoogle Scholar
  31. 31.
    T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, vol. 41, pp. 341–55.CrossRefGoogle Scholar
  32. 32.
    M. Jafari, W.M. Garrison, and K. Tsuzaki: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 647–53.CrossRefGoogle Scholar
  33. 33.
    J. Sun, T. Jiang, H. Liu, S. Guo, and Y. Liu: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 5985–93.CrossRefGoogle Scholar
  34. 34.
    Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–5.CrossRefGoogle Scholar
  35. 35.
    S. Patra, S.M. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.CrossRefGoogle Scholar
  36. 36.
    B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.CrossRefGoogle Scholar
  37. 37.
    P.D.Hodgson and R.K. Gibbs: ISIJ Int., 1992, vol. 32, pp. 1329–38.CrossRefGoogle Scholar
  38. 38.
    F. Siciliano Jr. and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 511–30.CrossRefGoogle Scholar
  39. 39.
    A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367–76.CrossRefGoogle Scholar
  40. 40.
    M. Militzer: ISIJ Int., 2007, vol. 47, pp. 1–15.CrossRefGoogle Scholar
  41. 41.
    E. Scheil: Z Met., 1942, vol. 34, pp. 70–2.Google Scholar
  42. 42.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997Google Scholar
  43. 43.
    S.C.M. and B.J.H.: in Proceedings of International Conference on HSLA Steels, D.P. Dune and T. Chandra, eds., South Coast Printers, Australia, 1985, pp. 142–50.Google Scholar
  44. 44.
    M. Militzer and Y. Brechet: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, vol. 40, pp. 2273–82.CrossRefGoogle Scholar
  45. 45.
    A. Bodin, J. Sietsma, and S. van der Zwaag: Mater. Charact., 2001, vol. 47, pp. 187–93.CrossRefGoogle Scholar
  46. 46.
    S. Hong, S. Lim, K. Lee, D. Shin, and K. Lee: ISIJ Int., 2002, vol. 42, pp. 1461–7.CrossRefGoogle Scholar
  47. 47.
    R.K. Ray, J. Jonas: Int. Mater. Rev, 1990, vol. 35, pp. 1-36CrossRefGoogle Scholar
  48. 48.
    H Zhao, BP Wynne and EJ Palmiere: Materials Characterization, 2017, Vol. 123, pp. 128-136CrossRefGoogle Scholar
  49. 49.
    T. Hanamura, S. Torizuka, S. Tamura, S. Enokida and H. Takechi, ISIJ Int., 2013, V0l. 53, pp. 2218-2225CrossRefGoogle Scholar
  50. 50.
    P. Chapellier, R.K. Ray, and J.J. Jonas: Acta Metall. Mater., 1990, vol. 38, pp. 1475–90.CrossRefGoogle Scholar
  51. 51.
    S. Tsurekawa, S. Nakamichi, and T. Watanabe: Acta Mater., 2006, vol. 54, pp. 3617–26.CrossRefGoogle Scholar
  52. 52.
    C.-S. Kim, Y. Hu, G.S. Rohrer, and V. Randle: Scr. Mater., 2005, vol. 52, pp. 633–7.CrossRefGoogle Scholar
  53. 53.
    P.R. Rios, I.S. Bott, D.B. Santos, T.M.F. de Melo, J.L. Ferreira: Mater. Sci. Technol., 2007, vol. 23, pp. 417–22.CrossRefGoogle Scholar
  54. 54.
    H. Luo, J. Sietsma, S. Van der Zwaag, S. Van Der Zwaag: Metall. Mater. Trans. A, 2004, 35A, pp. 2789–97.CrossRefGoogle Scholar
  55. 55.
    M. Tong, D. Li, Y. Li, J. Ni, and Y. Zhang: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1565–77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Sudipta Patra
    • 1
    • 2
    Email author
  • Abhisek Mandal
    • 1
  • Madhumanti Mandal
    • 1
    • 3
  • Vinod Kumar
    • 4
  • Rahul Mitra
    • 1
  • Debalay Chakrabarti
    • 1
  1. 1.Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.Jindal Stainless LimitedHisarIndia
  3. 3.The University of British ColumbiaVancouverCanada
  4. 4.Research and Development Centre for Iron and Steel, RDCIS, Steel Authority of IndiaRanchiIndia

Personalised recommendations