Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 789–803 | Cite as

Competitive Nucleation and Growth Between the Primary and Peritectic Phases of Rapidly Solidifying Ni–Zr Hypoperitectic Alloy

  • P. Lü
  • H. P. WangEmail author
  • B. Wei
Article
  • 78 Downloads

Abstract

The Ni-16 at. pct Zr hypoperitectic alloy melt was substantially undercooled using an electromagnetic levitator and a drop tube. The undercooling-induced competitive growth between the primary Ni7Zr2 and peritectic Ni5Zr phases was revealed by observing of the recalescence process in situ and confirmed by analyzing the solidified microstructures, X-ray diffraction pattern as well as dendritic growth velocity. When the liquid undercooling is less than a critical value of 106 K, the primary Ni7Zr2 phase initially precipitates from the parent liquid, which is subsequently followed by the nucleation and growth of the peritectic Ni5Zr phase around it. The solidified microstructure consists of the Ni7Zr2 phase, the Ni5Zr phase, and inter-dendritic eutectics. The orientation relationship and interface characteristics of the Ni7Zr2 and Ni5Zr phases were investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The EBSD results clearly demonstrate that the Ni7Zr2 and Ni5Zr phases have the parallel relationship of {111}Ni7Zr2 // {111}Ni5Zr. TEM analysis reveals that a large-scale flat interface exists between the Ni7Zr2 and Ni5Zr phases, indicating good lattice matching of the two phases along the phase boundary. Once the critical undercooling is exceeded, the peritectic Ni5Zr phase preferentially nucleates and grows from the undercooled melt by completely suppressing the formation of the primary Ni7Zr2 phase. The EBSD analysis shows that the peritectic Ni5Zr phase is highly orientated and its growth mode is almost parallel to the 〈110〉 directions. When containerlessly solidified during free fall, typical peritectic microstructures form in large droplets, while only peritectic phase appears in the small droplets. This result further confirms the strong competition between the primary and peritectic phases in the Ni–Zr hypoperitectic alloy induced by large undercoolings.

Notes

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant Nos. 51327901, 51522102, 51474175, and 51734008) and the Fundamental Research Funds for the Central Universities is gratefully acknowledged. The authors are grateful to E.Y Wang and F. Liu for their kind help with the EBSD experiments. We also thank Dr. J. Chang, Mr. M.X. Li, Mr. P.F. Zou, and Mr. Y.F. Si for the stimulating discussions.

References

  1. 1.
    D. Tourret, G. Reinhart, Ch.-A. Gandin, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, C.M. Bao, Acta Mater., 2011, vol. 159, pp. 6658-6669.CrossRefGoogle Scholar
  2. 2.
    I. Sohn, R. Dippenaar, Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083-2094.CrossRefGoogle Scholar
  3. 3.
    O. Riosa, D.M. Cupidb, H.J. Seifert and F. Ebrahimia, Acta Mater., 2009, vol 57, pp. 6243-6250.CrossRefGoogle Scholar
  4. 4.
    J.V.J. Congreve, Y.H. Shi, A.R. Dennis, J.H. Durrell, D.A. Cardwell, J. Am. Ceram. Soc., 2016, vol. 99, pp. 3111-3119.CrossRefGoogle Scholar
  5. 5.
    L. Yang, Z.N. Zhou, J.R. Qian, X. Ge, J. Li, Q.D. Hu, J.G. Li, Metall. Mater. Trans. A, 2017, vol. 48, pp. 4229-4236.CrossRefGoogle Scholar
  6. 6.
    B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science, 2017, vol. 357, pp. 1029-1032.CrossRefGoogle Scholar
  7. 7.
    P. Lü, H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 22641.CrossRefGoogle Scholar
  8. 8.
    C. Tang, P. Harrowell, Nat. Mater., 2013, vol. 12, pp. 507-511.CrossRefGoogle Scholar
  9. 9.
    D. H. St. Jonh, Acta Metall., 1990, vol. 38, pp. 631-636.CrossRefGoogle Scholar
  10. 10.
    D. H. St. John, L. M. Hogan, Acta Metall., 1987, vol. 35, pp. 171-174.CrossRefGoogle Scholar
  11. 11.
    S. Griesser, M. Reid, C. Bernhard, R. Dippenaar, Acta Mater., 2014, vol. 67, pp. 335-341.CrossRefGoogle Scholar
  12. 12.
    C.J. Todaor, M.A. Easton, D. Qiu, G. Wang, D.H. St. John, M. Qian, Metall. Mater. Trans. A, 2017, vol. 48, pp. 5579-5590.CrossRefGoogle Scholar
  13. 13.
    P. Lü, H.P. Wang, Scr. Mater., 2017, vol. 137, pp. 31-35.CrossRefGoogle Scholar
  14. 14.
    A. Ludwig, J.P. Mogeritsch, T. Pfeifer, Acta Mater., 2017, vol. 126, pp. 329-335.CrossRefGoogle Scholar
  15. 15.
    K. Tokieda, H. Yasuda, I. Ohnaka, Mater. Sci. Eng. A, 1999, vol. 262, pp. 238-245.CrossRefGoogle Scholar
  16. 16.
    D. Phelan, M. Reid, R. Dippenaar, Mater. Sci. Eng. A, 2008, vol. 477, pp. 226-232.CrossRefGoogle Scholar
  17. 17.
    M. Leonhardt, W. Löser, and H.-G. Lindenkreuz, Acta Mater., 2002, vol. 50, pp. 725-734.CrossRefGoogle Scholar
  18. 18.
    P. Lü, K. Zhou, H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 39042.CrossRefGoogle Scholar
  19. 19.
    W. Zhai, B. Wei, Mater. Lett., 2013, vol. 108, pp. 145-148.CrossRefGoogle Scholar
  20. 20.
    W. Löser, M. Leonhardt, H.-G. Lindenkreuz, B. Arnold, Mater. Sci. Eng. A, 2004, vol. 375, pp. 534-539.CrossRefGoogle Scholar
  21. 21.
    W.Z. Zhang, G.C. Weatherly, Prog. Mater. Sci., 2005, vol. 50, pp. 181-292.CrossRefGoogle Scholar
  22. 22.
    A.R.S. Gautam, J.M. Howe, Phil. Mag., 2011, vol. 91, pp. 3203-3227.CrossRefGoogle Scholar
  23. 23.
    Z.L. Ma, S.A. Belyakov, K. Sweatman, T. Nishimura, T. Nishimura, C.M. Gourlay, Nat. Commun., 2017, vol. 8, pp. 1916.CrossRefGoogle Scholar
  24. 24.
    H.I. Aaronson, C. Laird, K.R. Kinsman, Scr. Metall., 1968, vol. 2, pp. 259.CrossRefGoogle Scholar
  25. 25.
    P. Gargarella, S. Pauly, M. Samadi Khoshkhoo, U. Kühn, J. Eckert, Acta Mater., 2014, vol. 65, pp. 256-269.CrossRefGoogle Scholar
  26. 26.
    D.M. Lee. J.H. Sun, D.H. Kang, S.Y. Shin. G. Welsch, C.H. Lee, Intermetallics, 2012, vol. 21, pp. 67-74.CrossRefGoogle Scholar
  27. 27.
    A. Salčinović Fetić, G. Remenyi, D. Starešinić, A. Kuršumović, E. Babić, S. Sulejmanović, K. Biljaković, Phys. Rev. B, 2017, vol. 96, pp. 064201.CrossRefGoogle Scholar
  28. 28.
    M.H. Yang, Y. Li, J.H. Li, B.X. Liu, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 19976.CrossRefGoogle Scholar
  29. 29.
    G.W. Lee, Y.C. Cho, B. Lee, Kenneth F. Kelton, Phys. Rev. B, 2017, vol. 95, pp. 054202.CrossRefGoogle Scholar
  30. 30.
    M.H. Enayati, E. Dastanpoor, Metall. Mater. Trans. A, 2013, vol. 44, pp. 3984-3998.CrossRefGoogle Scholar
  31. 31.
    P. Kuhn, J. Horbach, F. Kargl, A. Meyer, Th. Voigtmann, Phys. Rev. B, 2014, vol. 90, pp. 024309.CrossRefGoogle Scholar
  32. 32.
    I. Kaban, P. Jóvári, V. Kokotin, O. Shuleshova, B. Beuneu, K. Saksl, N. Mattern, J. Eckert, and A.L. Greer, Acta Mater., 2013, vol. 61, pp. 2509-2520.CrossRefGoogle Scholar
  33. 33.
    M. Guerdane, H. Teichler, B. Nestler, Phys. Rev. Lett., 2013, vol. 110, pp. 086105.CrossRefGoogle Scholar
  34. 34.
    D. Turnbull, J. Appl. Phys., 1950, vol. 21, pp. 1022.CrossRefGoogle Scholar
  35. 35.
    J. Lipton, W. Kurz, R. Trivedi, Acta Metall., 1987, vol. 35, pp. 957–964.CrossRefGoogle Scholar
  36. 36.
    R. Trivedi, J. Lipton, W. Kurz, Acta Metall., 1987, vol. 35, pp. 965–970.CrossRefGoogle Scholar
  37. 37.
    W.J. Boettinger, S.R. Coriell, R. Trivedi: in Rapid solidification processing: principle and technologies IV, vol. 13, R. Mehrabian, and P.A. Parrish, eds. Baton Rouge, 1988.Google Scholar
  38. 38.
    K.A. Jackson, in: R.H. Doremus, B.W. Roberts, D.Turnbull (Eds.), Growth and Perfection of Crystals, John Wiley, New York, 1958, pp. 319–324.Google Scholar
  39. 39.
    N.J.E. Adkins, P. Tsakiropoulos, Mater. Sci. Tech., 1991, vol. 7, pp. 334-340.CrossRefGoogle Scholar
  40. 40.
    E.S. Lee, S. Ahn, Acta Metall., 1994, vol. 42, pp. 3231-3243.CrossRefGoogle Scholar
  41. 41.
    P.S. Grant, B. Cantor, L. Katgerman, Acta Metall., 1993, vol. 41, pp. 3097-3108.CrossRefGoogle Scholar
  42. 42.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, in Binary alloy phase diagram, ASM International, 1990, vol. 3, p. 1249.Google Scholar
  43. 43.
    E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7th, 1992 1–43 Ch. 14. London.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations