Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 874–883 | Cite as

Microstructural Evolution, Behavior of Precipitates, and Mechanical Properties of Powder Metallurgical High-Speed Steel S390 During Tempering

  • Hanlin Peng
  • Ling HuEmail author
  • Xianglin ZhangEmail author
  • Xing Wei
  • Liejun Li
  • Jianyu Zhou


The evolution of the microstructure and mechanical properties of a powder metallurgical (PM) high-speed steel (HSS) were investigated using a series of tempering times. A near Baker–Nutting (B–N) orientation relationship (OR) between the MC carbide and martensitic matrix was detected, while no OR between the M6C carbide and matrix was observed. The average grain size of the investigated alloys was approximately 4 to 6 μm, which was slightly larger than the thermodynamic calculated grain size of 2 μm. The results indicated that the Rockwell hardness, compressive strength, and in-situ nano-hardness of martensite decreased as the tempering times increased. After quadruple tempering, the fracture strain, compressive strength, and flexural strength declined. Triple tempering contributed to the superior combination of compressive strength, fracture strain, Rockwell hardness, and flexural strength of 3245 MPa, 30.6 pct, HRC 62.2, and 2094 MPa, respectively. The investigated alloys demonstrated strong susceptibility to cracks. The results of this study could provide useful information for the application of this HSS.



This work was financially supported by the Science and Technology Support Program of Hubei province (Grant No. 2015BAA015). We would also like to thank the Analytical and Testing Center of the Huazhong University of Science and Technology for all related measurements.


  1. 1.
    S.Z. Wei, J.H. Zhu and L.J. Xu: Mater. Sci. Eng. A ser. 1–2, 2005, vol. 404, pp. 138–45.Google Scholar
  2. 2.
    C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim, J.S. Yang: Metall. Mater. Trans. A, 2005, ser. 1, vol. 36, pp. 87-97.CrossRefGoogle Scholar
  3. 3.
    V. Leskovsek, B. Ule: J. Mater. Process. Technol., 1998, vol. 82, pp. 89-94.CrossRefGoogle Scholar
  4. 4.
    A. Várez, B. Levenfeld, J.M. Torralba, G. Matula, L.A. Dobrzanski: Mater. Sci. Eng. A, 2004, ser. 2, vol. 366, pp. 318-324.CrossRefGoogle Scholar
  5. 5.
    V. Trabadelo, S. Giménez and I. Iturriza: Mater. Sci. Engi. A, 2009, vol. 499, pp. 360–67.Google Scholar
  6. 6.
    H.Z. Li, W.P. Tong, J.J. Cui, H. Zhang, L.Q. Chen, L. Zuo: Mater. Sci. Eng. A, 2016, vol. 662, pp. 356-362.CrossRefGoogle Scholar
  7. 7.
    V. Leskovsek, M. Kalinb, J. Vizintinb: Vacuum, 2006, ser. 6, vol. 80, pp. 507–518.CrossRefGoogle Scholar
  8. 8.
    H.L. Peng, L. Hu, T.W. Ngai, L.J. Li, X.L. Zhang, H. Xie, W.P. Gong: Mater. Sci. Eng. A, 2018, vol. 719, pp. 21-26.CrossRefGoogle Scholar
  9. 9.
    Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, B.Y. Hou: Mater. Sci. Eng. A, 2018, vol. 711, pp. 397-404.CrossRefGoogle Scholar
  10. 10.
    H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, X.P. Ma, D.Z. Li: Mater. Sci. Eng. A, 2018, vol. 709, pp. 181-192.CrossRefGoogle Scholar
  11. 11.
    M. Niederkofler and M. Leisch: Appl. Surf. Sci., 2004, vol. 235, pp. 132–38.Google Scholar
  12. 12.
    M. Godec, B.Š. Batič, D. Mandrino, A. Nagode, V. Leskovšek, S.D. Škapin, M. Jenko: Mater. Charact., 2010, ser. 4, vol. 61, pp. 452-458.CrossRefGoogle Scholar
  13. 13.
    Y. Torres, S. Rodriguez, A. Mateo, M. Anglada, L. Llanes: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 501-504.CrossRefGoogle Scholar
  14. 14.
    V. Leskovšek, B. Podgornik: Mater. Sci. Eng. A, 2012, vol. 531, pp. 119-129.CrossRefGoogle Scholar
  15. 15.
    B. Podgornik, F. Majdic, V. Leskovsek, J. Vizintin: Wear, 2012, vol. 288, pp. 88-93.CrossRefGoogle Scholar
  16. 16.
    H.L. Peng, L. Hu, L.J. Li, L.Y. Zhang, X.L. Zhang: J. Alloy. Compd., 2018, vol. 740, pp. 766-773.CrossRefGoogle Scholar
  17. 17.
    P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček: Mater. Charact., 2017, vol. 134, pp. 398-415.CrossRefGoogle Scholar
  18. 18.
    S. Sackl, H. Leitner, H. Clemens, S. Primig: Mater. Charact., 2016, vol. 120, pp. 323-330.CrossRefGoogle Scholar
  19. 19.
    H.Y. Kim, J.Y. Kang, D.M. Son, T.H. Lee, K.M. Cho: Mater. Charact., 2015, vol. 107, pp. 376-385.CrossRefGoogle Scholar
  20. 20.
    X.J. Di, M. Li, Z.W. Yang, B.S. Wang, X.J. Guo: Mater. Des., 2016, vol. 96, pp. 232-240.CrossRefGoogle Scholar
  21. 21.
    L. Couturier, F. De Geuser, M. Descoins, A. Deschamps: Mater. Des., 2016, vol. 107, pp. 416-425.CrossRefGoogle Scholar
  22. 22.
    Y.X. Zheng, F.M. Wang, C.R. Li, Y.L. Li, J. Cheng: Mater. Sci. Eng. A, 2018, vol. 712, pp. 453-465.CrossRefGoogle Scholar
  23. 23.
    J.R. Li, C.L. Zhang, B. Jiang, L.Y. Zhou, Y.Z. Liu: J. Alloy. Compd., 2016, vol. 685, pp. 248-257.CrossRefGoogle Scholar
  24. 24.
    V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, A. Kortmann: Metall. Mater. Trans. A, 2014, ser. 5, vol. 45, pp. 2453-2465.CrossRefGoogle Scholar
  25. 25.
    L.J. Wang, L.Y. Sheng, C.M. Hong: Mater. Des., 2012, vol. 37, pp. 349-355.CrossRefGoogle Scholar
  26. 26.
    M. Wieβner, M. Leisch, H. Emminger, A. Kulmburg: Mater. Charact., 2008, ser. 7, vol. 59, pp. 937-943.CrossRefGoogle Scholar
  27. 27.
    O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, D. Raabe: Acta Mater., 2011, ser. 1, vol. 59, pp. 364-374.CrossRefGoogle Scholar
  28. 28.
    H. Springer, M. Belde, D. Raabe: Mater. Sci. Eng. A, 2013, vol. 582, pp. 235-244.CrossRefGoogle Scholar
  29. 29.
    Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, H.S. Zhang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 152–161.CrossRefGoogle Scholar
  30. 30.
    A. Molkeri, F. Pahlevani, I. Emmanuelawati, V. Sahajwalla: Mater. Lett., 2016, vol. 163, pp. 209-213.CrossRefGoogle Scholar
  31. 31.
    A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, G. Krauss: Acta Mater., 2014, vol. 77, pp. 17-27.CrossRefGoogle Scholar
  32. 32.
    N. Saini, C. Pandey, M.M. Mahapatra, R.S. Mulik: Mater. Sci. Eng. A, 2018, vol. 711, pp. 37-43.CrossRefGoogle Scholar
  33. 33.
    Q.L. Yong: Secondary Phases in Steels, 1 st ed., Metallurgy Industry Press, Beijing, 2006, pp. 196–257.Google Scholar
  34. 34.
    G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee: J. Alloy. Compd., 2017, vol. 705, pp. 817-827.CrossRefGoogle Scholar
  35. 35.
    K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, K. Ono: Metall. Mater. Trans. A, 2004, ser. 4, vol. 35, pp. 1289-1300.CrossRefGoogle Scholar
  36. 36.
    K. Miao, Y.L. He, N.Q. Zhu, J.J. Wang, X.G. Lu, L. Li: J. Alloy. Compd., 2015, vol. 622, pp. 513-523.CrossRefGoogle Scholar
  37. 37.
    F. Zhang, Y.P. Guo, W.M. Zhou, Properties of materials, 2 ed., Shanghai Jiao Tong University Press, Shanghai, 2009, pp. 22-23.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations