Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 704–718 | Cite as

Residual Strain Analysis in Linear Friction Welds of Similar and Dissimilar Titanium Alloys Using Energy Dispersive X-ray Diffraction

  • Ritwik Bandyopadhyay
  • John Rotella
  • Diwakar Naragani
  • Jun-Sang Park
  • Michael Eff
  • Michael D. SangidEmail author


Residual strains in linear friction welds (LFW) of similar, Ti-6Al-4V (Ti64) welded to Ti-6Al-4V, and dissimilar, Ti-6Al-4V welded to Ti-5Al-5V-5Mo-3Cr (Ti5553), titanium alloys have been characterized using energy-dispersive X-ray diffraction. For each type of LFW, one sample was chosen in the as-welded (AW) condition and another sample was selected after a post-weld heat treatment (HT). In the present work, residual strains have been separately studied in the alpha and beta phases of the material, and five components (three axial and two shear) have been reported in each case. In-plane axial components of the residual strains show a smooth and symmetric behavior about the weld center for the Ti64-Ti64 LFW samples in the AW condition, whereas these components in the Ti64-Ti5553 LFW sample show a symmetric trend with jump discontinuities. Such jump discontinuities, observed in both the AW and HT conditions of the Ti64-Ti5553 samples, suggest different strain-free lattice parameters in the weld region and the parent material, whereas the results from the Ti64-Ti64 LFW samples in both AW and HT conditions suggest nearly uniform strain-free lattice parameters throughout the weld region. Finally, the observed trends in the in-plane axial residual strain components have been rationalized by the corresponding microstructural changes and variations across the weld region via backscatter electron (BSE) images.



Financial support for this work was provided by the National Science Foundation (Grant Number CMMI 16-51956) under program manager, Dr. Alexis Lewis, and the Lightweight Innovation for Tomorrow Institute (Grant Number LIFT TMP-3a). Base materials for the Ti64-Ti64 and Ti64-Ti5553 welds were provided by Dr. Tom Broderick (GE) and Dr. Austin Mann (Boeing), respectively. The authors thank Dr. Andrew Chuang (APS) for assistance with the setup of the EDD measurement. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    J. Cho, K. Conlon, and R. Reed: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2935–46.CrossRefGoogle Scholar
  2. 2.
    I. Bhamji, M. Preuss, P.L. Threadgill, and A.C. Addison: Mater. Sci. Technol., 2011, vol. 27, pp. 2–12.CrossRefGoogle Scholar
  3. 3.
    R. Turner, R.M. Ward, R. March, and R.C. Reed: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2012, vol. 43, pp. 186–97.CrossRefGoogle Scholar
  4. 4.
    P.J. Withers: Reports Prog. Phys., 2007, vol. 70, pp. 2211–64.CrossRefGoogle Scholar
  5. 5.
    P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.CrossRefGoogle Scholar
  6. 6.
    V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, 1997.Google Scholar
  7. 7.
    I.A. Denks, M. Klaus, and C. Genzel: Mater. Sci. Forum, 2006, vol. 524–525, pp. 37–44.CrossRefGoogle Scholar
  8. 8.
    C. Genzel, I.A. Denks, R. Coelho, D. Thomas, R. Mainz, D. Apel, and M. Klaus: J. Strain Anal. Eng. Des., 2011, vol. 46, pp. 615–25.CrossRefGoogle Scholar
  9. 9.
    W. Reimers, M. Broda, G. Brusch, D. Dantz, K.D. Liss, A. Pyzalla, T. Schmackers, and T. Tschentscher: J. Non-Destructive Eval., 1998, vol. 17, pp. 129–40.Google Scholar
  10. 10.
    A. Steuwer, J.R. Santisteban, M. Turski, P.J. Withers, and T. Buslaps: J. Appl. Crystallogr., 2004, vol. 37, pp. 883–9.CrossRefGoogle Scholar
  11. 11.
    M. Croft, I. Zakharchenko, Z. Zhong, Y. Gurlak, J. Hastings, J. Hu, R. Holtz, M. Dasilva, and T. Tsakalakos: J. Appl. Phys., 2002, vol. 92, pp. 578–86.CrossRefGoogle Scholar
  12. 12.
    M.R. Daymond and N.W. Bonner: Phys. B Condens. Matter, 2003, vol. 325, pp. 130–37.CrossRefGoogle Scholar
  13. 13.
    M. Preuss, J. Quinta Da Fonseca, A. Steuwer, L. Wang, P.J. Withers, and S. Bray: J. Neutron Res., 2004, vol. 12, pp. 165–73.CrossRefGoogle Scholar
  14. 14.
    J. Romero, M.M. Attallah, M. Preuss, M. Karadge, and S.E. Bray: Acta Mater., 2009, vol. 57, pp. 5582–92.CrossRefGoogle Scholar
  15. 15.
    P. Frankel, M. Preuss, A. Steuwer, P.J. Withers, and S. Bray: Mater. Sci. Technol., 2009, vol. 25, pp. 640–50.CrossRefGoogle Scholar
  16. 16.
    P. Xie, H. Zhao, and Y. Liu: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 351–57.CrossRefGoogle Scholar
  17. 17.
    SAE-AMS 4911H: SAE International, Warrendale, PA, USA, 1995, p. 1.Google Scholar
  18. 18.
    T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777–81.CrossRefGoogle Scholar
  19. 19.
    R. Young: Int. Union Crystallogr., 1993.Google Scholar
  20. 20.
    S.L.R. da Silva, L.O. Kerber, L. Amaral, and C.A. dos Santos: Surf. Coatings Technol., 1999, vol. 116–119, pp. 342–46.CrossRefGoogle Scholar
  21. 21.
    M.B. Ivanov, S.S. Manokhin, Y.R. Kolobov, and D.A. Nechayenko: Mater. Phys. Mech., 2010, vol. 10, pp. 62–71.Google Scholar
  22. 22.
    A.K. Swarnakar, O. Van Der Biest, and B. Baufeld: J. Alloys Compd., 2011, vol. 509, pp. 2723–28.CrossRefGoogle Scholar
  23. 23.
    L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.CrossRefGoogle Scholar
  24. 24.
    J.V. Bernier, J.-S. Park, A.L. Pilchak, M.G. Glavicic, and M.P. Miller: Metall. Mater. Trans. A, 2008, vol. 39, pp. 3120–33.CrossRefGoogle Scholar
  25. 25.
    M. Kasemer, R. Quey, and P. Dawson: J. Mech. Phys. Solids, 2017, vol. 103, pp. 179–98.CrossRefGoogle Scholar
  26. 26.
    T. Ozturk and A.D. Rollett: Comput. Mech., 2017, pp. 1–16.Google Scholar
  27. 27.
    K.M. Knowles and P.R. Howie: J. Elast., 2015, vol. 120, pp. 87–108.CrossRefGoogle Scholar
  28. 28.
    D. Tromans: Int. J. Res. Rev. Appl. Sci., 2011, vol. 6, pp. 462–83.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ritwik Bandyopadhyay
    • 1
  • John Rotella
    • 2
  • Diwakar Naragani
    • 1
  • Jun-Sang Park
    • 3
  • Michael Eff
    • 4
  • Michael D. Sangid
    • 1
    • 2
    Email author
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Advanced Photon Source, Argonne National LaboratoryLemontUSA
  4. 4.Edison Welding InstituteColumbusUSA

Personalised recommendations