Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 625–640 | Cite as

On the Anisotropy of the Ductile to Brittle Transition Behavior in a Wrought and in Two Oxide Dispersion Strengthened FeCrAl Steels

  • J. Chao
  • M. M. Aranda
  • R. Rementeria
  • M. Serrano
  • C. CapdevilaEmail author
Article
  • 76 Downloads

Abstract

The directionality of the ductile-brittle transition behavior of two oxide-dispersion-strengthened (ODS) FeCrAl steels with similar chemical compositions, tensile properties, and sub-micrometric grain sizes but different processing routes, and a Zr-particle strengthened FeCrAl steel manufactured by high vacuum melting is discussed. Despite the similarities of the ODS FeCrAl steels, strong differences in the lower and upper shelf energy and the ductile to brittle transition temperature were observed for longitudinal through thickness notched specimens. Although the lower and upper shelf energies of longitudinal surface-notched specimens of ODS FeCrAl steels are similar, a strong difference in the ductile-to-brittle transition temperature is observed. For through-thickness notched and surface-notched specimens taken transversely, the analyzed ODS FeCrAl steels show a similar ductile-to-brittle behavior. In general, the FeCrAl alloy strengthened with Zr-particles presents a more isotropic behavior and a higher ductile-to-brittle transition temperature than the ODS FeCrAl steels. In addition, the upper shelf energy of the FeCrAl steel strengthened with Zr-particles is significantly higher than that of the ODS FeCrAl steels.

Notes

Acknowledgments

The authors acknowledge financial support to Spanish Ministerio de Economia y Competitividad (MINECO) in the form of a Coordinate Project (MAT2016-80875-C3-1-R). The authors are grateful for the dilatometer tests by Phase Transformation laboratory. This work contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).

References

  1. 1.
    H. Kishimoto, R. Kasada, A. Kimura, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, and T. Fujisawa: Proceeding of the International Congress on Advances in Nuclear Power Plants, Tokyo, Japan, 2009, 3, pp. 2227–34.Google Scholar
  2. 2.
    M.J. Alinger, G.R. Odette, G.E. Lucas, J. Nuc. Mat., 2002, 307-311, pp. 484-489.CrossRefGoogle Scholar
  3. 3.
    R. Kasada, S.G. Lee, J. Isselin, J.H. Lee, T. Omura, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nuc. Mat., 2011, 417, pp. 180-184.CrossRefGoogle Scholar
  4. 4.
    T.M. Zwieten, J.H. Bulloch, Int. J. Pres. Ves. Piping, 1993, 56, pp. 1-31.CrossRefGoogle Scholar
  5. 5.
    ASTM E399-90 Annual Book of ASTM Standard. American Society of Testing of Materials: Warrendale, PA, USA, 2011; 502-534.Google Scholar
  6. 6.
    G. Pimentel: PhD thesis, Universidad Complutense de Madrid, Junio 2014, Madrid, Spain.Google Scholar
  7. 7.
    J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J.A. Jimenez, G. Pimentel, E. Urones-Garrote, Met. Mater. Trans. A, 2013, 44A, pp. 4581-4594.CrossRefGoogle Scholar
  8. 8.
    M.F. Hupalo, M. Terada, A.M. Kliauga, A.F. Padilha, Materialwis Werstofftech, 2003, 39, pp. 505-508.CrossRefGoogle Scholar
  9. 9.
    A. Czyrska-Filemonowicz, M. Wrobel, B. Dubiel, P.J. Ennis, Scr. Metall. Mater., 1995, 32, pp. 331-335.CrossRefGoogle Scholar
  10. 10.
    X.B. Li, Y. Min, C.J. Liu, M.F. Jiang, Mat. Sci. Technol., 2015, 32(5), pp. 454-462.CrossRefGoogle Scholar
  11. 11.
    J. Chao, R. Rementeria, M. Aranda, C. Capdevila, J.L. González-Carrasco, Materials, 2016, 9, pp. 1-15.CrossRefGoogle Scholar
  12. 12.
    U. Lotter, L. Meyer, Met. Technol., 1977, 4, pp. 27-31.CrossRefGoogle Scholar
  13. 13.
    G.J. Baczynski, J.J. Jonas, I.E. Collins, Met. Mater. Trans. A, 1999, 30A, pp. 3045-3054.CrossRefGoogle Scholar
  14. 14.
    J.D. Embury, N.J. Petch, A.E. Wraith, E.S. Wright, Trans. Met. Soc. AIME, 1967, 239, pp. 114-118.Google Scholar
  15. 15.
    Y. Kimura, T. Inoue, F. Yin and K. Tsuzaki, ISIJ Int., 2010, 50, pp. 152-161.CrossRefGoogle Scholar
  16. 16.
    J.W. Hancock, A.C. Mackenzie, J. Mech. Phys. Solids, 1976, 24, pp. 147-169.CrossRefGoogle Scholar
  17. 17.
    B.I. Edelson, W.M. Baldwin Jr, Trans. ASM, 1962, 55, pp. 230-250.Google Scholar
  18. 18.
    D. Bhattacharjee, J.F Knott, C.L. Davis, Met. Mat. Trans. A, 2004, 35A, pp. 121-130.CrossRefGoogle Scholar
  19. 19.
    M.L. Jokl, J. Kameda, C.J. McMahon Jr, V. Vitek, Met. Sci., 1980, 14, pp. 375-384.CrossRefGoogle Scholar
  20. 20.
    C.L. Briant, J. de Physique Colloque C5, 1988, 49, pp. C5-3-C5-20.Google Scholar
  21. 21.
    W.A. Sorem, R.H. Dodds, S.T. Rolfe, Int. J. Fract., 1991, 47, pp. 105-126.CrossRefGoogle Scholar
  22. 22.
    T.L. Panontin, M.R. Hill, Int. J. Fract., 1996, 82, pp. 317-333.CrossRefGoogle Scholar
  23. 23.
    J.M. Rodriguez-Ibabe, Mat. Sci. Forum, 1988, 284-286, pp. 51-62.Google Scholar
  24. 24.
    W. Zhou, B. Voss, J.G. Blauel, Scr. Met. Mater., 1992, 26, pp. 1411-1416.CrossRefGoogle Scholar
  25. 25.
    B. Mintz, Met. Technol., 1980, 7, pp. 127-129.CrossRefGoogle Scholar
  26. 26.
    W. Dahl: A Handbook for Materials Research and Engineering, Verein Deutscher Eisenhüttenleute, Springer, Berlin, 1992, Vol 1, Part B1, pp. 204–378.Google Scholar
  27. 27.
    W.B. Morrison, Met. Technol., 1975, 2, pp. 33-41.CrossRefGoogle Scholar
  28. 28.
    M.S Joo, D.W. Suh, H.K.D.H. Bhadeshia, ISIJ Int., 2013, 53, pp. 1305-1314.CrossRefGoogle Scholar
  29. 29.
    B. Mintz. E.M. Maina, W.B. Morrison, Mat. Sci. Technol., 2008, 24, pp. 177-188.CrossRefGoogle Scholar
  30. 30.
    B. Mintz, W.B. Morrison, Mat. Sci. Technol., 2007, 23, pp. 1346-1356.CrossRefGoogle Scholar
  31. 31.
    E. Maina, D.W. Crowther, J.R. Banerjee, B. Mintz, Mat. Sci. Technol., 2012, 28, pp. 390-396.CrossRefGoogle Scholar
  32. 32.
    B.L. Ferguson: Proceedings of AIME, Annual Meeting on “What Does the Charpy Test Really Tell-Us?”, A.R. Rosenfield (Ed), ASM, Denver, CO, 1978, pp. 90–107.Google Scholar
  33. 33.
    J. Sánchez-Gutiérrez, J. Chao, J. Vivas, F. Galvez, C. Capdevila, Materials, 2017, 10, pp. 745-758.CrossRefGoogle Scholar
  34. 34.
    H. Okada, S. Ukai, M. Inoue, J. Nuc. Sci. Technol., 1996, 33, pp. 936-943.CrossRefGoogle Scholar
  35. 35.
    A.T. English, J. Met., 1965, 17, pp. 395-401.Google Scholar
  36. 36.
    A. Hohenwarter, C. Kammerhofer, R. Pippan, J. Mater. Sci., 2010, 45, pp. 4805-4812.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • J. Chao
    • 1
  • M. M. Aranda
    • 1
  • R. Rementeria
    • 1
    • 2
  • M. Serrano
    • 3
  • C. Capdevila
    • 1
    Email author
  1. 1.Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)MadridSpain
  2. 2.SLabArcelorMittal Global R&D AsturiasAvilésSpain
  3. 3.Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)MadridSpain

Personalised recommendations