Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 688–703 | Cite as

Microstructure and Mechanical Properties of Dissimilar TC4 Titanium Alloy/304 Stainless Steel Joint Using Copper Filler Wire

  • Xiaohu Hao
  • Peng Li
  • Yueqing Xia
  • Honggang Dong
  • Pengxiao Wang
  • Dejun Yan
Article
  • 74 Downloads

Abstract

TC4 titanium alloy was successfully welded to 304 stainless steel using gas tungsten arc welding with a CuSi3 filler wire. The Ti/weld transition zone in the joint consisted of β-Ti, Ti2Cu, AlCu2Ti, TiCu, and Ti5Si3 intermetallic compounds (IMCs) when welded with low current. As the welding current increased, more Fe dissolved into the weld pool, and massive ternary Ti-Cu-Fe and AlCu2Ti IMCs formed in the Ti/weld transition zone. The segregated Ti5Si3 phase disappeared, and complex Fe-Ti-Si-Cr IMCs formed outside the Ti/weld transition zone. The microhardness was much higher in the Ti/weld transition zone than that in the TC4 substrate and copper weld, reaching a maximum value of 619 HV. The highest tensile strength was 328 MPa when the welding current was 120 A and the traveling speed was 4 mm/s. All joints failed through the Ti/weld transition zone, and brittle cleavage features were present on the fractured surfaces. Due to the large difference in thermophysical properties between the two base metals, cracks were easily generated, which restricted the improvement in the tensile strength of the TC4/304 SS joint.

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51674060 and 51605075), the National Key Research and Development Program (No. 2016YFB0701401), the China Postdoctoral Science Foundation (No. 2016M601303), and Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships (Grant No. 2017B030302010). Also this study was technically supported by the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.

References

  1. 1.
    U. Kamachi. Mudali, B.M. Ananda Rao, K. Shanmugam, R. Natarajan, B. Raj: J. Nucl. Mater., 2003, vol. 321, pp. 40-48.CrossRefGoogle Scholar
  2. 2.
    E. Norouzi, M. Atapour, M. Shamanian: J. Alloy Compd., 2017, vol. 701, pp. 335-41.CrossRefGoogle Scholar
  3. 3.
    T. Wang, B.G. Zhang, J.C. Feng, Q. Tang: Mater. Charact., 2012, vol. 73, pp. 104-13.CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, D.Q. Sun, X.Y. Gu, H.M. Li: Mater. Lett., 2016, vol. 185, pp. 152-55.CrossRefGoogle Scholar
  5. 5.
    X. Li, J.L. Li, Z.X. Liao, F. Jin, F.S. Zhang, J.T. Xiong: Mater. Des., 2016, vol. 99, pp. 26-36.CrossRefGoogle Scholar
  6. 6.
    H.G. Dong, L.Z. Yu, D.W. Deng, W.L. Zhou, C. Dong: J. Mater. Sci. Technol., 2015, vol. 31, pp. 962-68.CrossRefGoogle Scholar
  7. 7.
    Q.L. Chu, M. Zhang, J.H. Li, C. Yan: Mat. Sci. Eng. A., 2017, vol. 689, pp. 323-31.CrossRefGoogle Scholar
  8. 8.
    M. Gloc, M. Wachowski, T. Plocinski, K.J. Kurzydlowski: J. Alloy Compd., 2016, vol. 671, pp. 446-51.CrossRefGoogle Scholar
  9. 9.
    C. Yu, H. Xiao, H. Yu, Z.C. Qi, C. Xu: Mat. Sci. Eng. A., 2017, vol. 695, pp. 120-25.CrossRefGoogle Scholar
  10. 10.
    J.G. Liu, W.C. Cai, L. Liu, J.T. Han, J. Liu: Mat. Sci. Eng. A., 2017, vol. 703, pp. 386-98.CrossRefGoogle Scholar
  11. 11.
    C. Velmurugan, V. Senthilkumar, S. Sarala, J. Arivarasan: J. Mater. Process. Tech., 2016, vol. 234, pp. 272-79.CrossRefGoogle Scholar
  12. 12.
    T.F. Song, X.S. Jiang, Z.Y. Shao, Y.J. Fang, D.F. Mo, D.G. Zhu, M.H. Zhu: Vacuum, 2017, vol. 145, pp. 69-76.CrossRefGoogle Scholar
  13. 13.
    H.G. Dong, Z.L. Yang, Z.R. Wang, D.W. Deng, C. Dong: J. Mater. Sci. Technol., 2015, vol. 31, pp. 217-22.CrossRefGoogle Scholar
  14. 14.
    H.G. Dong, Z.L. Yang, G.S. Yang, C. Dong: Mat. Sci. Eng. A., 2013, vol. 561, pp. 252-58.CrossRefGoogle Scholar
  15. 15.
    H.C. Chen, G.J. Bi, Y.B. Lee, C.K. Cheng: J. Mater. Process. Tech., 2015, vol. 231, pp. 58-65.CrossRefGoogle Scholar
  16. 16.
    I. Tomashchuk, P. Sallamand, N. Belyavina, M. Pilloz: Mat. Sci. Eng. A., 2013, vol. 585, pp. 114-22.CrossRefGoogle Scholar
  17. 17.
    S.A.A.A. Mousavi, P.F. Sartangi: Mat. Sci. Eng. A., 2008, vol. 494, pp. 329-36.CrossRefGoogle Scholar
  18. 18.
    E. Norouzi, M. Atapour, M. Shamanian, A. Allafchian: Mater. Des., 2016, vol. 99, pp. 543-51.CrossRefGoogle Scholar
  19. 19.
    S. Guo, Q. Zhou, Y. Peng, X.F. Xu, C.L. Diao, J. Kong, T.Y. Luo, K.H. Wang, J. Zhu: Mater. Des., 2017, vol. 121, pp. 51-60.CrossRefGoogle Scholar
  20. 20.
    S.H. Chen, M.X. Zhang, J.H. Huang, C.J. Cui, H. Zhang, X.K. Zhao: Mater. Des., 2014, vol. 53, pp. 504-11.CrossRefGoogle Scholar
  21. 21.
    T. Wang, B.G. Zhang, J.C. Feng: T. Nonferr, Metal. Soc., 2014, 24, 108-14.Google Scholar
  22. 22.
    M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng: Sci. Technol. Weld. Joi., 2012, vol. 17, pp. 269-76.CrossRefGoogle Scholar
  23. 23.
    I. Tomashchuk, D. Grevey, P. Sallamand: Mat. Sci. Eng. A., 2015, vol. 622, pp. 37-45.CrossRefGoogle Scholar
  24. 24.
    Y. Ustinovshikov, B. Pushkarev, I. Sapegina: J. Alloy Compd., 2005, vol. 398, pp. 133-38.CrossRefGoogle Scholar
  25. 25.
    D.H. Xie, K.Z. Liu, X.B. Xian, L.S. Ye, Y.P. Chen: Rare. Metal. Mat. Eng., 2008, vol. 37, pp. 1566-69.CrossRefGoogle Scholar
  26. 26.
    R.J. Kurtz, M.L. Hamilton, H. Li: J. Nucl. Mater., 1998, vol. 258-263, pp. 1375-79.CrossRefGoogle Scholar
  27. 27.
    T. Wang, B.G. Zhang, G.Q. Chen, J.C. Feng: Vacuum, 2013, vol. 94, pp. 41-47.CrossRefGoogle Scholar
  28. 28.
    B.G. Zhang, T. Wang, X.H. Duan, G.Q. Chen, J.C. Feng: T. Nonferr. Metal. Soc., 2012, vol. 22, pp. 398-403.CrossRefGoogle Scholar
  29. 29.
    I. Tomashchuk, P. Sallamand, H. Andrzejewski, D. Grevey: Intermetallics, 2011, vol. 19, pp. 1466-73.CrossRefGoogle Scholar
  30. 30.
    J.L. Murray: J. Phase. Equilib., 1983, vol. 4, pp. 81-95.Google Scholar
  31. 31.
    V. Raghavan: J. Phase. Equilib. Diff., 2006, vol. 37, pp. 156-57.Google Scholar
  32. 32.
    Q.L. Chu, R.X. Bai, M. Zhang, J.H. Li, Z.K. Lei, N. Hu, J.M. Bell, C. Yan: Mater. Charact., 2017, vol. 132, pp. 330-37.CrossRefGoogle Scholar
  33. 33.
    Y. Gao, K. Nakata, K. Nagatsuka, F.C. Liu, J. Liao: Mater. Des, 2015, vol. 65, pp. 17-23.CrossRefGoogle Scholar
  34. 34.
    M. Gao, C. Chen, L. Wang, Z.M. Wang, X.Y. Zeng: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2007-20.CrossRefGoogle Scholar
  35. 35.
    A.R. Miedema, P.F.D. Châtel, F.R.D. Boer: Physica. B., 1980, vol. 100, pp. 1-28.CrossRefGoogle Scholar
  36. 36.
    J.A.V. Beek, A.A. Kodentsov, F.J.J.V. Loo: J. Alloy Compd., 1995, vol. 217, pp. 97-103.CrossRefGoogle Scholar
  37. 37.
    K. Liu, Y.J. Li, J. Wang: Mater. Manuf. Process., 2016, vol. 31, pp. 1-9.CrossRefGoogle Scholar
  38. 38.
    MatWeb. http://www.matweb.com/. Accessed 22 Jun 2018

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Xiaohu Hao
    • 1
  • Peng Li
    • 1
  • Yueqing Xia
    • 1
  • Honggang Dong
    • 1
  • Pengxiao Wang
    • 1
  • Dejun Yan
    • 2
  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianP.R. China
  2. 2.Guangdong Provincial Key Laboratory of Advanced Welding Technology for ShipsCSSC Huangpu Wenchong Shipbuilding Company LimitedGuangzhouP.R. China

Personalised recommendations