Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 966–974 | Cite as

Solid-State Phase Diagram of the Ho-Zr-Si Ternary System at 973 K (700 °C)

  • Chengxia Wei
  • Yongzhong ZhanEmail author


The phase equilibria of the Ho-Zr-Si ternary system were experimentally determined at 973 K (700 °C) in the entire concentration range by using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), and differential scanning calorimetry (DSC). The results show that there are 13 single-phase regions, 23 two-phase regions, and 11 three-phase regions in the investigated isothermal section, and no ternary compound is found. The composition ranges of all phases are extremely small. Among these, there are ten extensions of the binary compounds, i.e., ZrSi2, α-ZrSi, α-Zr5Si4, Zr3Si2, Zr2Si, β-HoSi2-a, α-HoSi2-b, HoSi, Ho5Si4, and Ho5Si3, in the ternary system. They are Zr1–xHoxSi2 (x ≤ 0.084), α-Zr1–xHoxSi (x ≤ 0.156), α-Zr5–xHoxSi4 (x ≤ 0.945), Zr3–xHoxSi2 (x ≤ 0.550), Zr2–xHoxSi (x ≤ 0.180), β-Ho1–xZrxSi2–a (x ≤ 0.124), α-Ho1–xZrxSi2–b (x ≤ 0.147), Ho1–xZrxSi (x ≤ 0.220), Ho5–xZrxSi4 (x ≤ 1.368), and Ho5–xZrxSi3 (x ≤ 0.592), respectively. In the present work, the phase transformation temperatures of β-HoSi2-b → α-HoSi2–b and Ho3Si4 → β-HoSi2–b + HoSi are determined to be 979.7 K (706.7 °C) and 1479.3 K (1206.3 °C), respectively, by analyzing the DSC results.



This research work is jointly supported by the National Natural Science Foundation of China (Grant No. 51761002), the National Key R&D Program of China (Grant No. 2016YFB0301400), the Training Plan of High-Level Talents of Guangxi University (Grant No. XMPZ160714), and the research project of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials (Grant No. GXYSSF1807).


  1. 1.
    M.L. Flem, J. Canel, and S. Urvoy: J. Alloys Compd., 2008, vol. 465, pp. 269–73.CrossRefGoogle Scholar
  2. 2.
    G. Sharma, P.K. Limaye, and D.T. Jadhav: J. Nucl. Mater., 2009, vol. 394, pp. 151–54.CrossRefGoogle Scholar
  3. 3.
    J. She, Y.Z. Zhan, and C.L. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6454–58.CrossRefGoogle Scholar
  4. 4.
    H. Yeom, B. Majer, R. Mariani, D. Bai, S. Fronek, P. Xu, and K. Sridharan: Surf. Coat. Technol., 2017, vol. 316, pp. 30–38.CrossRefGoogle Scholar
  5. 5.
    J.F. Zhang, X.X Gan, H.Q. Tang, and Y.Z. Zhan: Mater. Sci. Eng. C, 2017, vol. 76, pp. 260–68.CrossRefGoogle Scholar
  6. 6.
    P. Zeman and J. Musil: Appl. Surf. Sci., 2006, vol. 252, pp. 8319–25CrossRefGoogle Scholar
  7. 7.
    Z.X. Song, K.W. Xu, and H. Chen: Microelectron. Eng., 2004, vol. 71, pp. 28–33.CrossRefGoogle Scholar
  8. 8.
    Y.-L. Deng, J.-W. Lee, B.-S. Lou, J.-G. Duh, J.P. Chu, and J.S.-C. Jang: Surf. Coat. Technol., 2014, vol. 259, pp. 115–22.CrossRefGoogle Scholar
  9. 9.
    F. Rosalbino, E. Angelini, S.D. Negri, A. Saccone, and S. Delfino: Intermetallics, 2005, vol. 13, pp. 55–60.CrossRefGoogle Scholar
  10. 10.
    R.A. Karnesky, D.C. Dunand, and D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4022–31.CrossRefGoogle Scholar
  11. 11.
    S.P. Wen, Z.B. Xing, H. Huang, B.L. Li, W. Wang, and Z.R. Nie: Mater. Sci. Eng. A, 2009, vol. 516, pp. 42–49.CrossRefGoogle Scholar
  12. 12.
    C.L. Li, Y.Z. Zhan, J. She, Q.X. Huang, M.J. Pang, and W.C. Yang: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 20–28.Google Scholar
  13. 13.
    J. She, C.L. Li, M.J. Pang, and Y.Z. Zhan: J. Alloys Compd., 2011, vol. 509, pp. 246–51.CrossRefGoogle Scholar
  14. 14.
    W.C. Yang, Y.Z. Zhan, M.J. Pang, C.L. Li, and Y. Du: J. Phase Equilib. Diff., 2011, vol. 32, pp. 435–40.CrossRefGoogle Scholar
  15. 15.
    J.X. He, W. He, Y. Xiang, and L.M. Zeng: J. Rare Earth, 2012, vol. 30, pp. 79–83.CrossRefGoogle Scholar
  16. 16.
    W. He, J.M. He, X.H. Wang, and L.M. Zeng: J. Alloys Compd., 2010, vol. 494, pp. 128–31.CrossRefGoogle Scholar
  17. 17.
    V.N. Eremenko, V.E. Listovnichii, S.P. Luzan, Y.I. Buyanow, and P.S. Martsenyuk: J. Alloys Compd., 1995, vol. 219, pp. 181–84.CrossRefGoogle Scholar
  18. 18.
    H. Okamoto: J. Phase Equilib. Diff., 1996, vol. 17, pp. 370–71.CrossRefGoogle Scholar
  19. 19.
    J. Kim and I.-H. Jung: J. Chem. Thermodyn., 2015, vol. 81, pp. 273–97.CrossRefGoogle Scholar
  20. 20.
    I. Ijjaali, G. Venturini, and B. Malaman: J. Alloys Compd., 1997, vol. 269, pp. L6–L8.CrossRefGoogle Scholar
  21. 21.
    J. Roger, V. Babizhetskyy, T. Guizouarn, K. Hiebl, R. Guerin, and J.-F. Halet: J. Alloys Compd., 2006, vol. 417, pp. 72–84.CrossRefGoogle Scholar
  22. 22.
    H. Luo, C.H. Tang, B. Zhang, W.C. Yang, H.Q. Tang, and Y.Z. Zhan: Int. J. Mater. Res., 2015, vol. 106, pp. 1–6.CrossRefGoogle Scholar
  23. 23.
    F. Han and Y.Z. Zhan: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1851–58.Google Scholar
  24. 24.
    H. Okamoto: Bull. Alloy Phase Diagr., 1990, vol. 11, pp. 513–19.CrossRefGoogle Scholar
  25. 25.
    Y.A. Kocherzhinskii and O.G. Kulick: Tezisv Dokl. Vses. Konf. Kristallokhim. Intermet. Soedin., 1974, vol. 2, pp. 154–55.Google Scholar
  26. 26.
    H. Schachner, H. Nowotny, and R. Machenschalk: Monatsh. Chem., 1953, vol. 84, pp. 677–85.CrossRefGoogle Scholar
  27. 27.
    V. Raghavan: J. Phase Equilib. Diff., 2011, vol. 32, pp. 557–58.CrossRefGoogle Scholar
  28. 28.
    M.J. Pang, Y.Z. Zhan, W.C. Yang, C.L. Li, and Y. Du: J. Alloys Compd., 2010, vol. 508, pp. 79–84.CrossRefGoogle Scholar
  29. 29.
    J. Roger, T. Guizouarn, K. Hiebl, J.-F. Halet, and R. Guerin: J. Alloys Compd., 2005, vol. 394, pp. 28–34.CrossRefGoogle Scholar
  30. 30.
    Y.F. Pan, H.M. Ye, X.X. Chen, W.P. Jiang, W.C. Yang, and Y.Z. Zhan: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6569–76.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.College of Resources, Environment and Materials, and the Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured MaterialsGuangxi UniversityNanningP.R. China

Personalised recommendations