Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 1021–1032 | Cite as

Mechanisms of the Hydrogen Influence on the Diffusivity of Nitrogen During Plasma Nitriding Austenitic Stainless Steel

  • Teresa MoskaliovieneEmail author
  • Arvaidas Galdikas
Article

Abstract

The influence of hydrogen on the diffusivity of nitrogen in plasma nitriding process of austenitic stainless steel (ASS) is analyzed by the presented theoretical calculations. Both processes in the bulk and on the surface are taken into account and involved into calculations. The internal stress assisted hydrogen and nitrogen diffusion in ASS taking place during plasma nitriding using various mixtures of nitrogen, and hydrogen is concerned as a key element of elucidation of nitrogen transport in expanded austenite. A systematic model for nitrogen transport in ASS that takes into account the hydrogen actions at steel surface, hydrogen, and nitrogen diffusion with concentration-dependent diffusion coefficient and stress interaction is proposed. It is shown that diffusion behavior of nitrogen in steel is affected by not only hydrogen and nitrogen concentration but also, the stress induced by interstitial solutes atoms expanding the lattice of the alloy. Increase of total hydrogen and nitrogen concentration in steel leads to increase of a gradient in the compositionally induced stress and, as result, the driving force for the diffusion of nitrogen increases, i.e., the nitrogen atoms diffuse deeper into the steel. Moreover, it was shown that the addition of hydrogen in H2-N2 mixture flux with concentrations in the range ~ (30 to 40) pct enhances nitrogen penetration into steel due to the hydrogen actions at steel surface.

Notes

Acknowledgments

This research was funded by a Grant (No. S-MIP-17-103, Reg. Nr. P-MIP-17-258) from the Research Council of Lithuania.

References

  1. 1.
    [1] A. Saker, Ch. Leroy, H. Michel, C. Frantz: Mater. Sci. Eng. A, 1991, vol. 140, pp. 702-708.CrossRefGoogle Scholar
  2. 2.
    [2] K. H. Lo, C. H. Shek, J. K. L. Lai: Mater. Sci. Eng., 2009, vol. R65 4-6, pp. 39-104.CrossRefGoogle Scholar
  3. 3.
    [3] H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65-98.CrossRefGoogle Scholar
  4. 4.
    [4] E. De Las Heras, G. Ybarra, D. Lamas, A. Cabo, E. L. Dalibon, S. P. Brühl: Surf. Coat. Technol., 2017, vol. 313, pp. 47-54.CrossRefGoogle Scholar
  5. 5.
    [5] K. Ichii, K. Fujimura, T. Takase: Technol. Rep. Kansai Univ., 1986, vol. 27, pp. 135-144.Google Scholar
  6. 6.
    T. Christiansen, M.A.J. Somers: e-Structure, 2006, vol. 9, pp. 1-17.Google Scholar
  7. 7.
    [7] M. Rahman, J. Haider, M.S.J. Hashmi: Surf. Coat. Technol., 2005, vol. 200, pp. 1645-1651.CrossRefGoogle Scholar
  8. 8.
    [8] T. Czerwiec, N. Renevier, H. Michel: Surf. Coat. Technol., 2000, vol. 131, pp. 267-277.CrossRefGoogle Scholar
  9. 9.
    [9] M.P. Fewell, D.R.G. Mitchell, J.M. Priest, K.T. Short, G.A. Collins: Surf. Coat. Technol., 2000, vol. 131, pp. 300-306.CrossRefGoogle Scholar
  10. 10.
    [10] M.K. Lei, Z.L. Zhang: J. Vac. Sci. Technol., 1995, vol. A13, pp. 2986-2990.CrossRefGoogle Scholar
  11. 11.
    [11] E. Menthe and K.-T. Rie: Surf. Coat. Technol., 1999, vol. 116-119, pp. 199-204.CrossRefGoogle Scholar
  12. 12.
    [12] Y. Zhao, B. Yu, L. Dong, H. Du, J. Xiao: Surf. Coat. Technol., 2012, vol. 210, pp. 90-96.CrossRefGoogle Scholar
  13. 13.
    [13] J.M. Priest, M.J. Baldwin, M.P. Fewell, S.C. Haydon, G.A. Collins, K.T. Short, J. Tendys: Thin Solid Films, 1999, vol. 345, pp. 113-118.CrossRefGoogle Scholar
  14. 14.
    [14] S. Mändl, B. Fritzsche, D. Manova, D. Hirsch, H. Neumann, E. Richter, B. Rauschenbach: Surf. Coat. Technol., 2005, vol. 195, pp. 258-263.CrossRefGoogle Scholar
  15. 15.
    [15] T. Czerwiec, H. Michel, E. Bergmann: Surf. Coat. Technol., 1998, vol. 108-109, pp. 182-190.CrossRefGoogle Scholar
  16. 16.
    [16] A. Szasz, D.J. Fabian, A. Hendry, Z. Szaszne-Csih: J. Appl. Phys., 1989, vol. 66, pp. 5598-5601.CrossRefGoogle Scholar
  17. 17.
    [17] G.G. Tibbets: J. Appl. Phys., 1974, vol. 45, pp. 5072-5073.CrossRefGoogle Scholar
  18. 18.
    [18] M. Hudis: J. Appl. Phys., 1973, vol. 44, pp. 1489-1496.CrossRefGoogle Scholar
  19. 19.
    [19] J. Bougdira, G. Henrion, M. Fabry: J. Phys. D-Appl. Phys., 1991, vol. 24, pp. 1076-1080.CrossRefGoogle Scholar
  20. 20.
    [20] J.M. Priest, M.J. Baldwin, M.P. Fewell: Surf. Coat. Technol., 2001, vol. 145, pp. 152-163.CrossRefGoogle Scholar
  21. 21.
    [21] D. Hovorka, J. Vlček, R. Čerstvy, J. Musil, P. Belsky, M. Ružička, J.G. Han: J. Vac. Sci. Technol., 2000, vol. A18, pp. 2715-2721.CrossRefGoogle Scholar
  22. 22.
    [22] A. Garamoon, U.M. Rashed, A. Abouelela, M.A. Eissa, A.H. Saudi, D.M. El-zeer, F. El-Hossary: IEEE Transactions on Plasma Science, 2006, vol. 34, pp. 1066-1073.CrossRefGoogle Scholar
  23. 23.
    [23] S. Kumar, M.J. Baldwin M.P. Fewell, S.C. Haydon, K.T. Short, G.A. Collins, J. Tendys: Surf. Coat. Technol., 2000, vol. 123, pp. 29-35.CrossRefGoogle Scholar
  24. 24.
    [24] L. Wang, X. Xu, Z. Yu, Z. Hei: Surf. Coat. Technol., 2000, vol. 124, pp. 93-96.CrossRefGoogle Scholar
  25. 25.
    [25] C. A. Figueroa, D. Wisnivesky, F. Alvarez: J. Appl. Phys., 2002, vol. 92, pp. 764-770.CrossRefGoogle Scholar
  26. 26.
    [26] C. A. Figueroa and F. Alvarez: J. Vac. Sci. Technol., 2005, vol. A23, pp. L9-L12.CrossRefGoogle Scholar
  27. 27.
    [27] C.A. Figueroa, S. Weber, T. Czerwiec, F. Alvarez: Scripta Mater., 2006, vol. 54, pp. 1335-1338.CrossRefGoogle Scholar
  28. 28.
    [28] M. Tamaki, Y. Tomii, N. Yamamoto: Plasmas and Ions, 2000, vol. 3, pp. 33-39.CrossRefGoogle Scholar
  29. 29.
    [29] L. Petitjean and A. Ricard: J. Phys. D-Appl. Phys., 1984, vol. 17, pp. 919-929.CrossRefGoogle Scholar
  30. 30.
    [30] H. Martinez, F.B. Yousif: Eur. Phys. J., 2008, vol. D46, pp. 493-498.CrossRefGoogle Scholar
  31. 31.
    [31] B. Baranowski: J. Less-Common Metals, 1989, vol. 154, pp. 329-353.CrossRefGoogle Scholar
  32. 32.
    [32] F.C. Larche, J.W. Cahn: Acta Metall., 1982, vol. 30, pp.1835-1845.CrossRefGoogle Scholar
  33. 33.
    [33] W.Sh. Zhang, Z.L. Zhang, X.W. Zhang: J. Alloy. Comp., 2002, vol. 336, pp. 170-175.CrossRefGoogle Scholar
  34. 34.
    [34] A. Adrover, M. Giona, L. Capobianco, P. Tripodi, V. Violante: Int. J. Hydrogen Energy, 2003, vol. 28, pp. 1279-1284.CrossRefGoogle Scholar
  35. 35.
    [35] W.S. Zhang, M.Q. Hou, H.Y. Wang, Y.B. Fu: Int. J. Hydrogen Energy, 2004, vol. 29, pp. 1165-1172.CrossRefGoogle Scholar
  36. 36.
    [36] K. Kandasamy: Int. J. Hydrogen Energy, 1995, vol. 20(6), pp. 455-465.CrossRefGoogle Scholar
  37. 37.
    [37] A.M. Simon, Z.J. Grzywna: Acta Metall. Mater., 1992, vol. 40(12), pp. 3465-3473.CrossRefGoogle Scholar
  38. 38.
    [38] W.S. Zhang, X.W. Zhang, Z.L. Zhang: Phys. Rev., 2000, vol. B62, pp. 8884-8890.CrossRefGoogle Scholar
  39. 39.
    [39] Y. Sakamoto, X.Q. Tong, F.A. Lewis: Scr. Metall. Mater., 1991, vol. 25, pp. 1629-1634.CrossRefGoogle Scholar
  40. 40.
    [40] A. Galdikas, T. Moskalioviene: Comp. Mater. Sci., 2010, vol. 50, pp. 796-799.CrossRefGoogle Scholar
  41. 41.
    [41] A. Galdikas, T. Moskalioviene: Surf. Coat. Technol., 2011, vol. 205, pp. 3742-3746.CrossRefGoogle Scholar
  42. 42.
    [42] T. Moskalioviene, A. Galdikas: Vacuum, 2012, vol. 86, pp. 1552-1557.CrossRefGoogle Scholar
  43. 43.
    [43] A. Galdikas, T. Moskalioviene: Comp. Mater. Sci., 2013, vol. 72, pp. 140-145.CrossRefGoogle Scholar
  44. 44.
    [44] T. Moskalioviene, A. Galdikas: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, vol. 46A, pp. 5588-5595.CrossRefGoogle Scholar
  45. 45.
    S.R. deGroot, P. Mazur: Non-Equilibrium Thermodynamics, North Holland Publ. Comp., Amsterdam, 1962.Google Scholar
  46. 46.
    [46] P. Zoltowski: Electrochim. Acta, 1999, vol. 44, pp. 4415-4429.CrossRefGoogle Scholar
  47. 47.
    [47] B. Baranowski: Advances in Thermodynamics: Flow, Diffusion and Rate Processes, Taylor and Francis, New York, 1992.Google Scholar
  48. 48.
    [48] T. Christiansen, M. Somers: Mater. Sci. Eng., 2006, vol. A424, pp. 181-189.CrossRefGoogle Scholar
  49. 49.
    [49] T. Christiansen, M. Somers: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2006, vol. 37, pp. 675-682.CrossRefGoogle Scholar
  50. 50.
    [50] N. Mingolo, A.P. Tschiptschin, C.E. Pinedo: Surf. Coat. Technol., 2006, vol. 201, pp. 4215-4218.CrossRefGoogle Scholar
  51. 51.
    [51] F.N. Jespersen, J. Hattel, M.A.J. Somers: Modelling Simul. Mater. Sci. Eng., 2016, vol. 24, pp. 025003-31.CrossRefGoogle Scholar
  52. 52.
    [52] L. Marot, A. Straboni, M. Drouet: Surf. Coat. Technol., 2001, vol. 142-144, p. 384.CrossRefGoogle Scholar
  53. 53.
    W.S. Gorsky, Zeit. Phys. Soviet. U.: 1935, vol. 8, pp. 457-471.Google Scholar
  54. 54.
    D. Ilin: Simulation of Hydrogen Diffusion in Fcc Polycrystals. Effect of Deformation and Grain Boundaries, Mechanics [physics.med-ph], Universite de Bordeaux, 2014.Google Scholar
  55. 55.
    [55] D.G. Ulmer, C.J. Altstetter: Acta Metall. Mater., 1993, vol. 41, pp. 2235-2241.CrossRefGoogle Scholar
  56. 56.
    [56] M. Somers, T. Christiansen: J. Phase Equilib. Diff., 2005, vol. 26, pp. 520-528.CrossRefGoogle Scholar
  57. 57.
    [57] F. Fernandes, T. L. Christiansen, G. Winther, M. A. J. Somers: Acta Mater., 2015, vol. 94, pp. 271–280.CrossRefGoogle Scholar
  58. 58.
    [58] F. Fernandes, M. A. J. Somers, T. Christiansen: Adv. Mater. Res., 2014, vol. 996, pp. 155-161.CrossRefGoogle Scholar
  59. 59.
    [59] T. Moskalioviene, A. Galdikas: Mater. Sci-Medzg., 2011, vol. 17, pp. 11-15.Google Scholar
  60. 60.
    [60] Z. L. Zhang, T. Bell: Surf. Eng., 1985, vol. 1, p. 131.CrossRefGoogle Scholar
  61. 61.
    [61] A. Galdikas, S. Logothetidis, P. Patsalas, L. Pranevicius, M. Gioti: Diam. Relat. Mater., 1999, vol. 8, pp. 490-494.CrossRefGoogle Scholar
  62. 62.
    [62] R. Knizikevicius, A. Galdikas, A. Grigonis, L. Pranevicius, Ž. Rutkūnienė: Vacuum, 1996, vol. 47, pp. 1473-1477.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Physics DepartmentKaunas University of TechnologyKaunasLithuania

Personalised recommendations