Advertisement

Role of Anisotropic Strength and Stiffness in Governing the Initiation and Propagation of Yielding in Polycrystalline Solids

  • Andrew C. Poshadel
  • Paul R. DawsonEmail author
Article
  • 12 Downloads

Abstract

The ratio of directional strength-to-stiffness is important in governing the relative order in which individual crystals within a polycrystalline aggregate will yield as the aggregate is loaded. In this paper, a strength-to-stiffness parameter is formulated for multiaxial loading that extends a similar parameter developed specifically for uniaxial loading. Building on the principle of strength-to-stiffness, a methodology for predicting the macroscopic stresses at which elements in a finite element mesh yield is developed. This analysis uses elastic strain data from one increment of a purely elastic finite element simulation to make the prediction, given knowledge of the single-crystal yield surface. Simulations of austenitic stainless steel AL6XN are used to demonstrate the effectiveness of the strength-to-stiffness parameter and yield prediction methodology.

Notes

Acknowledgments

Support was provided by the US Office of Naval Research (ONR) under contract N00014-09-1-0447. The authors thank Michael A Gharghouri for his valuable suggestions on the manuscript.

References

  1. 1.
    W.F. Hosford, The mechanics of crystals and textured polycrystals (Oxford University Press, New York, 1993)Google Scholar
  2. 2.
    S.L. Wong, P.R. Dawson, Acta Mater. 58, 1658–1678 (2010)CrossRefGoogle Scholar
  3. 3.
    U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy (Cambridge University Press, Cambridge, UK, 1998)Google Scholar
  4. 4.
    A.C. Poshadel, M.A. Gharghouri, and P.R. Dawson: Metall. Mater. Trans. A, 2018,  https://doi.org/10.1007/s11661-018-5009-1.CrossRefGoogle Scholar
  5. 5.
    A.C. Poshadel, M.A. Gharghouri, and P.R. Dawson: Metall. Mater. Trans. A, 2018,  https://doi.org/10.1007/s11661-018-5085-2.CrossRefGoogle Scholar
  6. 6.
    A.C. Poshadel and P.R. Dawson: Metall. Mater. Trans. A, 2017, arXiv:1711.10631 (submitted).
  7. 7.
    I. Noyan, J. Cohen, Residual Stress, Measured by Diffraction and Interpretation, (Springer-Verlag, New York, 1987)Google Scholar
  8. 8.
    R. Snyder, J. Fiala, and H. Bunge: IUCR Crystallographic Symposia, Oxford University Press, Oxford, 1999Google Scholar
  9. 9.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics (Wiley, West Sussex, U.K., 2001)Google Scholar
  10. 10.
    M. Miller, P. Dawson, Current Opinion in Solid State and Materials Science 2014, 286–299 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Dawson, D. Boyce, S. MacEwen, R. Rogge, Metallurgical and Materials Transactions A 31, 1543–1555 (2000)CrossRefGoogle Scholar
  12. 12.
    U. Leinert, T. Han, J. Almer, P. Dawson, T. Leffers, L. Margulies, H. Nielsen, H. Poulsen, Acta Materialia 52, 4461–4467 (2004)CrossRefGoogle Scholar
  13. 13.
    X. Song, S.Y. Zhang, D. Dini, A. Korsunsky, Computational Materials Science 44, 131–137 (2008)CrossRefGoogle Scholar
  14. 14.
    L. Li, S. Van Petegem, H. Van Swygenhoven, P. Anderson, Acta Materialia 60, 7001–7010 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Hedstrom, T.-S. Han, U. Lienert, J. Almer, M. Oden, Acta Mater. 58, 734–744 (2010)CrossRefGoogle Scholar
  16. 16.
    T.S. Han, P.R. Dawson: Mater. Sci. Eng. A 405, 18–33 (2005)CrossRefGoogle Scholar
  17. 17.
    S.L. Wong, P.R. Dawson, Acta Materialia 59, 6901–6916 (2011)CrossRefGoogle Scholar
  18. 18.
    P. Dawson, D. Boyce, S. MacEwen, R. Rogge, Materials Science and Engineering A 313, 123–144 (2001)CrossRefGoogle Scholar
  19. 19.
    X. Song, S.Y. Zhang, D. Dini, A.M. Korsunsky, Computational Materials Science 44, 131–137 (2008)CrossRefGoogle Scholar
  20. 20.
    P.R. Dawson, D.E. Boyce, R. Rogge, Materials Science and Engineering A 399, 13–25 (2005)CrossRefGoogle Scholar
  21. 21.
    T. Marin, P.R. Dawson, M.A. Gharghouri, J. Mech. Phys. Solids 60, 921–944 (2012)CrossRefGoogle Scholar
  22. 22.
    D.M. Collins, T. Erinosho, F. Dunne, R.I. Todd, T. Connolley, M. Mostafavi, H. Kupfer, A.J. Wilkinson, Acta Materialia 124, 290–304 (2017)CrossRefGoogle Scholar
  23. 23.
    J.V. Bernier, M.P. Miller, Journal of Applied Crystallography 39, 358–368 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Miller, J.-S. Park, P.R. Dawson, T.-S. Han, Acta Materialia 56, 3927–3939 (2008)CrossRefGoogle Scholar
  25. 25.
    E. Wielewski, D.E. Boyce, J.-S. Park, M. Matthew, P.R. Dawson, Acta Materialia 126, 469–480 (2017)CrossRefGoogle Scholar
  26. 26.
    P.R. Dawson, D.E. Boyce, J.-S. Park, E. Wielewski, M.P. Miller, Acta Materialia 144, 92–106 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Kasemer, M. Echlin, J. Stinville, T. Pollock, P. Dawson, Acta Materialia 136, 288–302 (2017)CrossRefGoogle Scholar
  28. 28.
    J.C. Schuren, S.L. Wong, P.R. Dawson, M.P. Miller, J. Strain Analysis 49, 33–50 (2014)CrossRefGoogle Scholar
  29. 29.
    C. Efstathiou, D.E. Boyce, J.-S. Park, U. Lienert, P.R. Dawson, M.P. Miller, Acta Materialia 58, 5806–5816 (2010)CrossRefGoogle Scholar
  30. 30.
    D.C. Pagan, P.A. Shade, N.R. Barton, J.-S. Park, P. Kenesei, D.B. Menasche, J.V. Bernier, Acta Materialia 128, 406–417 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Chatterjee, J. Kob, J.J.T. Weiss, H. Philipp, J. Becker, C. Purohit, S. Gruner, A. Beaudoin, Journal of the Mechanics and Physics of Solids 109, 95–116 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Obstalecki, S.L. Wong, P.R. Dawson, M.P. Miller, Acta Mater. 75, 259–272 (2014)CrossRefGoogle Scholar
  33. 33.
    S.-L. Wong, M. Obstalecki, J.-S. Park, M. Miller, P. Dawson, Journal of the Mechanics and Physics of Solids 79, 157–185 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Abdolvand, M. Majkut, J. Oddershede, J.P. Wright, M.R. Daymond, Acta Materialia 93, 235–245 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Paranjape, P. Paul, H. Sharma, P. Kenesei, J.-S. Park, T. Duerig, L. Brinson, A.P. Stebner, Journal of the Mechanics and Physics of Solids 102, 46–66 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Kapoor, M. Sangid, Materials Science and Engineering: A 729, 53–63 (2018)CrossRefGoogle Scholar
  37. 37.
    H. Proudhon, N. Vaxelaire, S.S. Labat, S. Forest, O. Thomas, C. R. Physique 11, 293–303 (2010)CrossRefGoogle Scholar
  38. 38.
    S.L. Wong, J.S. Park, M.P. Miller, P.R. Dawson, Comput. Mater. Sci. 77, 456–466 (2013)CrossRefGoogle Scholar
  39. 39.
    P.R. Dawson and D.E. Boyce: arXiv:1504.03296 [cond-mat.mtrl-sci], 2015.
  40. 40.
    E.B. Marin, P.R. Dawson, Comput. Methods Appl. Mech. Engrg. 165, 1–21 (1998)CrossRefGoogle Scholar
  41. 41.
    E.B. Marin, P.R. Dawson, Comput. Methods Appl. Mech. Engrg. 165, 23–41 (1998)CrossRefGoogle Scholar
  42. 42.
    Allegheny Ludlum Corporation: Stainless Steel Al-6xn Alloy, Technical Data Blue Sheet, no dateGoogle Scholar
  43. 43.
    R. Quey, P. Dawson, F. Barbe, Computer Methods in Applied Mechanics and Engineering 200, 1729–1745 (2011)CrossRefGoogle Scholar
  44. 44.
    T. Marin, P.R. Dawson, M.A. Gharghouri, R.B. Rogge, Acta Mater. 56, 4183–4199 (2008)CrossRefGoogle Scholar
  45. 45.
    H.M. Ledbetter, Physica Status Solidi (A) 85, 89–96 (1984)CrossRefGoogle Scholar
  46. 46.
    S. Torbert: Applied Computer Science, 2nd edn. Springer International Publishing, Berlin, 2016.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations