Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 1009–1020 | Cite as

Optimization of the Electrophoretic Deposition Parameters for Biocomposite Hydroxyapatite/Chitosan/Collagen/h-BN Coatings on Ti6Al4V Biomedical Implants

  • Ali TozarEmail author
  • İsmail Hakki Karahan
  • Yasin Yücel
Article
  • 58 Downloads

Abstract

Ti6Al4V alloy biomedical implant materials were coated with a biocomposite hydroxyapatite/chitosan/collagen/h-BN layer using electrophoretic deposition at room temperature. Response surface methodology (RSM) and central composite design (CCD) were employed for modeling and optimizing the electrophoretic deposition parameters of chitosan concentration, deposition potential, and agitation speed. The mutual effects of these parameters on the responses (deposition yield and Ecorr) have been analyzed and displayed by response surface plots. Predicted and experimental values agreed well with each other. The average absolute errors between experimental and predicted values were calculated as 2.0 and 2.2 pct for response-1 (deposition yield) and response-2 (Ecorr), respectively. A 5-level-3-factor experimental design has been utilized to optimize electrophoretic deposition parameters. According to deposition yield and Ecorr models, optimized values were for chitosan concentration: 2.57 and 2.59 g/L, for deposition potential: 16.09 and 16.25 V, and for agitation speed: 247 and 229 rpm, respectively. The findings of this research suggest that statistical design methodologies (i.e., RSM and CCD) may effectively be employed for the modeling and optimizing of multi-electrophoretic deposition parameters. These results are encouraging and may be practiced for functionalization of Ti6Al4V biomedical implant devices to provide better in vivo biocompatibility performance.

Notes

Acknowledgment

Financial support for this research by the Mustafa Kemal University Scientific Research Projects through the grant from Mustafa Kemal University Research Foundation (Project No. 13920) is gratefully acknowledged.

References

  1. 1.
    [1] S.V. Dorozhkin, J. Mater. Sci., 2009, vol. 44. pp. 2343-2387.CrossRefGoogle Scholar
  2. 2.
    [2] H. Shigeishi, M. Takechi, M. Nishimura, M. Takamoto, M. Minami, K. Ohta, N. Kamata, Dent. Mater. J., 2012, vol. 31. pp. 54-60.CrossRefGoogle Scholar
  3. 3.
    [3] M.-C. Wang, H.-T. Chen, W.-J. Shih, H.-F. Chang, M.-H. Hon, I.M. Hung, Ceram. Int., 2015, vol. 41. pp. 2999-3008.CrossRefGoogle Scholar
  4. 4.
    [4] R. Drevet, A. Viteaux, J.C. Maurin, H. Benhayoune, RSC Adv., 2013, vol. 3. pp. 11148-11154.CrossRefGoogle Scholar
  5. 5.
    [5] S. Heydarian, Z. Ranjbar, S. Rastegar, Polym.-Plast. Technol. Eng., 2015, vol. 54. pp. 1193-1200.CrossRefGoogle Scholar
  6. 6.
    [6] W.N. Capello, J.A. D’Antonio, R.G. Geesink, J.R. Feinberg, M. Naughton, Clin. Orthop. Relat. Res., 2009, vol. 467. pp. 155-165.CrossRefGoogle Scholar
  7. 7.
    [7] Y. Chang, X. Yan, Q. Wang, L. Ren, J. Tong, J. Zhou, Carbohydr. Polym., 2017, vol. 157. pp. 1413-1418.CrossRefGoogle Scholar
  8. 8.
    [8] L. Nie, D. Chen, J. Fu, S.H. Yang, R.X. Hou, J.P. Suo, Biochem. Eng. J., 2015, vol. 98. pp. 29-37.CrossRefGoogle Scholar
  9. 9.
    [9] C.T. Wong, W.W. Lu, W.K. Chan, K.M.C. Cheung, K.D.K. Lukl, D.S. Lu, A.B.M. Rabie, L.F. Deng, J.C.Y. Leong, J. Biomed. Mater. Res. Part A, 2004, vol. 68A. pp. 513-521.CrossRefGoogle Scholar
  10. 10.
    [10] F. Sun, X. Pang, I. Zhitomirsky, J. Mater. Process. Technol., 2009, vol. 209. pp. 1597-1606.CrossRefGoogle Scholar
  11. 11.
    [11] D. Duraccio, F. Mussano, M.G. Faga, J. Mater. Sci., 2015, vol. 50. pp. 4779-4812.CrossRefGoogle Scholar
  12. 12.
    [12] H. Akazawa, Y. Ueno, Surf. Coat. Technol., 2015, vol. 266. pp. 42-48.CrossRefGoogle Scholar
  13. 13.
    [13] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, Metall. Mater. Trans. A, 2015, vol. 46A. pp. 1394-1404.CrossRefGoogle Scholar
  14. 14.
    [14] S. Kehoe, J. Stokes, J. Mater. Eng. Perform., 2011, vol. 20. pp. 306-316.CrossRefGoogle Scholar
  15. 15.
    [15] M. Itokazu, W. Yang, T. Aoki, A. Ohara, N. Kato, Biomaterials, 1998, vol. 19. pp. 817-819.CrossRefGoogle Scholar
  16. 16.
    [16] F. Minguez, M. Agra, S. Luruena, C. Ramos, J. Prieto, Drugs Exp. Clin. Res., 1990, vol. 16. pp. 231-235.Google Scholar
  17. 17.
    [17] Y. Liu, K. de Groot, E.B. Hunziker, Bone, 2005, vol. 36. pp. 745-757.CrossRefGoogle Scholar
  18. 18.
    [18] S. Das, S. Kumar, B. Doloi, B. Bhattacharyya, Int. J. Adv. Manuf. Technol., 2016, vol. 86. pp. 829-839.CrossRefGoogle Scholar
  19. 19.
    [19] A. Rapacz-Kmita, C. Paluszkiewicz, A. Ślósarczyk, Z. Paszkiewicz, J. Mol. Struct., 2005, vol. 744. pp. 653-656.CrossRefGoogle Scholar
  20. 20.
    [20] J. Zhang, C.-S. Dai, J. Wei, Z.-H. Wen, Appl. Surf. Sci., 2012, vol. 261. pp. 276-286.CrossRefGoogle Scholar
  21. 21.
    [21] X. Wang, J. Ma, Y. Wang, B. He, Biomaterials, 2001, vol. 22. pp. 2247-2255.CrossRefGoogle Scholar
  22. 22.
    [22] F. Zhao, W.L. Grayson, T. Ma, B. Bunnell, W.W. Lu, Biomaterials, 2006, vol. 27. pp. 1859-1867.CrossRefGoogle Scholar
  23. 23.
    [23] C. Paluszkiewicz, E. Stodolak, M. Hasik, M. Blazewicz, Spectrochim. Acta, Part A, 2011, vol. 79. pp. 784-788.CrossRefGoogle Scholar
  24. 24.
    [24] J.W. Lee, A. Kobayashi, T. Nakano, J. Bone Miner. Metab., 2017, vol. 35. pp. 308-314.CrossRefGoogle Scholar
  25. 25.
    [25] Y.Y. Shi, M. Li, Q. Liu, Z.J. Jia, X.C. Xu, Y. Cheng, Y.F. Zheng, J Mater Sci: Mater Med, 2016, vol. 27. pp. 48.Google Scholar
  26. 26.
    [26] R.A. Ahmed, R. Farghali, A. Fekry, Int. J. Electrochem. Sci, 2012, vol. 7. pp. 7270-7282.Google Scholar
  27. 27.
    [27] C. Wen, Surface Coating and Modification of Metallic Biomaterials, Elsevier Science, 2015.Google Scholar
  28. 28.
    [28] K. Vathsala, T.V. Venkatesha, B.M. Praveen, K.O. Nayana, Engineering, 2010, vol. 2(8). pp. 580–584.CrossRefGoogle Scholar
  29. 29.
    M. Zhang, Z. Li, P. Jiang, T. Lin, X. Li, D. Sun, J. Appl. Polym. Sci., 2017, vol. 134, art. no. 45109.Google Scholar
  30. 30.
    M.-M. Chen, Y.-Q. Huang, H. Guo, Y. Liu, J.-H. Wang, J.-L. Wu, Q.-Q. Zhang, J. Appl. Polym. Sci., 2014, vol. 131, art. no. 40998.Google Scholar
  31. 31.
    [31] I.C. Wilkie, M.D.C. Carnevali, F. Andrietti, Bolletino di zoologia, 1994, vol. 61. pp. 39-51.CrossRefGoogle Scholar
  32. 32.
    [32] X.T. Wu, M.L. Mei, Q.L. Li, C.Y. Cao, J.L. Chen, R. Xia, Z.H. Zhang, C.H. Chu, Materials, 2015, vol. 8. pp. 7889-7899.CrossRefGoogle Scholar
  33. 33.
    [33] Y. Kawasaki, S. Sotome, T. Yoshii, I. Torigoe, H. Maehara, Y. Sugata, M. Hirano, N. Mochizuki, K. Shinomiya, A. Okawa, J. Biomed. Mater. Res., Part B, 2010, vol. 92B. pp. 161-167.CrossRefGoogle Scholar
  34. 34.
    [34] C.H. Park, H.R. Pant, C.S. Kim, Dig J Nanomater Biostruct., 2013, vol. 8. pp. 1227-1234.Google Scholar
  35. 35.
    [35] R. Nie, R. Sang, X. Ma, Y. Zheng, X. Cheng, W. Li, L. Guo, H. Jin, Y. Wu, J. Catal., 2016, vol. 344. pp. 286-292.CrossRefGoogle Scholar
  36. 36.
    [36] N. Kostoglou, K. Polychronopoulou, C. Rebholz, Vacuum, 2015, vol. 112. pp. 42-45.CrossRefGoogle Scholar
  37. 37.
    [37] C.L. Zhang, Y. He, Y.Q. Zhan, L. Zhang, H. Shi, Z.H. Xu, Polym. Adv. Technol., 2017, vol. 28. pp. 214-221.CrossRefGoogle Scholar
  38. 38.
    [38] A. Tozar, I.H. Karahan, Appl. Surf. Sci., 2018, vol. 452. pp. 322-336.CrossRefGoogle Scholar
  39. 39.
    [39] A. Tozar, I.H. Karahan, Surf. Coat. Technol., 2018, vol. 340. pp. 167-176.CrossRefGoogle Scholar
  40. 40.
    [40] E. Husain, T.N. Narayanan, J.J. Taha-Tijerina, S. Vinod, R. Vajtai, P.M. Ajayan, ACS Applied Materials & Interfaces, 2013, vol. 5. pp. 4129-4135.CrossRefGoogle Scholar
  41. 41.
    [41] M. Cui, S. Ren, J. Chen, S. Liu, G. Zhang, H. Zhao, L. Wang, Q. Xue, Appl. Surf. Sci., 2017, vol. 397. pp. 77-86.CrossRefGoogle Scholar
  42. 42.
    [42] J. Tharajak, T. Palathai, N. Sombatsompop, Surf. Coat. Technol., 2017, vol. 321. pp. 477-483.CrossRefGoogle Scholar
  43. 43.
    [43] J.J. Maurer, CHAPTER 6 - Elastomers A2 - TURI, EDITH A, Thermal Characterization of Polymeric Materials, Academic Press, 1981, pp. 571-708.CrossRefGoogle Scholar
  44. 44.
    [44] T. Ali, K.I. Hakkı, Bioinspir. Biomim. Nan., 2018, vol. 7. pp. 149-158.Google Scholar
  45. 45.
    [45] A. Oyane, K. Onuma, A. Ito, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. Part A, 2003, vol. 64. pp. 339-348.CrossRefGoogle Scholar
  46. 46.
    [46] J. Zawadzki, H. Kaczmarek, Carbohydr. Polym., 2010, vol. 80. pp. 394-400.CrossRefGoogle Scholar
  47. 47.
    [47] A. Puchalska, M. Mucha, Prog. Chem. Appl. Chitin, 2011, vol. 16. pp. 31-42.Google Scholar
  48. 48.
    [48] A. Pawlak, M. Mucha, Thermochimica Acta, 2003, vol. 396. pp. 153-166.CrossRefGoogle Scholar
  49. 49.
    [49] V. Salles, S. Bernard, R. Chiriac, P. Miele, Journal of the European Ceramic Society, 2012, vol. 32. pp. 1867-1871.CrossRefGoogle Scholar
  50. 50.
    [50] W.C. Oliver, G.M. Pharr, J. Mater. Res., 2011, vol. 7. pp. 1564-1583.CrossRefGoogle Scholar
  51. 51.
    [51] C. Tromas, J. Colin, C. Coupeau, J.C. Girard, J. Woirgard, J. Grilhé, Eur. Phys. J. AP, 1999, vol. 8. pp. 123-128.CrossRefGoogle Scholar
  52. 52.
    S. Pathak, J.L. Riesterer, S.R. Kalidindi, J. Michler, Appl. Phys. Lett., 2014, vol. 105, art. no. 161913Google Scholar
  53. 53.
    [53] A.M. Díez-Pascual, M.A. Gómez-Fatou, F. Ania, A. Flores, Prog. Mater. Sci., 2015, vol. 67. pp. 1-94.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ali Tozar
    • 1
    Email author
  • İsmail Hakki Karahan
    • 1
  • Yasin Yücel
    • 2
  1. 1.Physics Department, Faculty of Art and ScienceMustafa Kemal UniversityHatayTurkey
  2. 2.Chemistry Department, Faculty of Art and ScienceMustafa Kemal UniversityHatayTurkey

Personalised recommendations