# Initiation and Propagation of Plastic Yielding in Duplex Stainless Steel

- 179 Downloads
- 3 Citations

## Abstract

The elastic-plastic behavior of a two-phase stainless steel alloy is explored at the crystal scale for five levels of stress biaxiality. The crystal lattice (elastic) strains were measured with neutron diffraction (ND) using tubular samples subjected to different combinations of axial load and internal pressure to achieve a range of biaxial stress ratios. Finite element simulations were conducted on virtual polycrystals using loading histories that mimicked the experimental protocols. Two-phase microstructures were instantiated based on microscopy images of the grain and phase topologies and on crystallographic orientation distributions from ND. Detailed comparisons were made between the measured and computed lattice strains for several crystal reflections in both phases for scattering vectors in the axial, radial, and hoop directions that confirm the model’s ability to accurately predict the evolving local stress states. The strength-to-stiffness parameter for multiaxial stress states developed for single-phase polycrystals was applied to explain the initiation of yielding across the five levels of stress biaxiality. Finally, building off the multiaxial strength-to-stiffness, the propagation of yielding over the volume of a polycrystal was estimated in terms of an equation that provides the local stress necessary to initiate yielding within crystals in terms of the macroscopic stress.

## Notes

### Acknowledgments

This study was supported by the US Office of Naval Research (ONR) under Contract N00014-09-1-0447. Neutron diffraction experiments were performed on the L3 diffractometer of the Canadian Neutron Beam Centre located at the NRU Reactor of CNL (Canadian Nuclear Laboratories).

## References

- 1.S.L. Wong and P.R. Dawson:
*Acta Mater*., 2010, vol. 58, pp. 1658–1678.CrossRefGoogle Scholar - 2.S.L. Wong and P.R. Dawson:
*Acta Mater*., 2011, vol. 59, pp. 6901–6916.CrossRefGoogle Scholar - 3.T. Marin, P.R. Dawson, M.A. Gharghouri, and R.B. Rogge:
*Acta Mater*., 2008, vol. 56, pp. 4183–4199.CrossRefGoogle Scholar - 4.T. Marin, P.R. Dawson, and M.A. Gharghouri:
*J. Mech. Phys. Solids*, 2012, vol. 60, pp. 921–944.CrossRefGoogle Scholar - 5.A.C. Poshadel and P.R. Dawson:
*Metall. Mater. Trans. A*, 2018, https://doi.org/10.1007/s11661-018-5013-5.Google Scholar - 6.M. Kasemer, M. Echlin, J. Stinville, T. Pollock, and P. Dawson:
*Acta Mater*., 2017, vol. 136, pp. 288–302.CrossRefGoogle Scholar - 7.I. Alvarez-Armas:
*Recent Pat. Mech. Eng.*, 2008, vol. 1, pp. 51–57.Google Scholar - 8.G. Lutjering and J.C. Williams:
*Titanium*, 2nd ed., Springer, Berlin, 2007.Google Scholar - 9.T.S. Han and P.R. Dawson:
*Mater. Sci. Eng. A*, 2005, vol. 405, pp. 18–33.CrossRefGoogle Scholar - 10.A. Baczmanski and C. Braham:
*Acta Mater*., 2004, vol. 52, pp. 1133–1142.CrossRefGoogle Scholar - 11.R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, and E.C. Oliver:
*Acta Mater*., 2006, vol. 54, pp. 5027–5039.CrossRefGoogle Scholar - 12.R. Dakhlaoui, C. Braham, and A. Baczmanski:
*Mater. Sci. Eng. A*, 2007, vol. 444, pp. 6–17.CrossRefGoogle Scholar - 13.V. Imbeni, A. Mehta, S.W. Robertson, T.W. Duerig, A.R. Pelton, and R.O. Ritchie:
*SMST 2003—Int. Conf. Shape Mem. Superelastic Technol*., 2003, pp. 267–76.Google Scholar - 14.A. Mehta, X.-Y. Gong, A.R. Pelton, and R.O. Ritchie:
*Adv. Mater*., 2007, vol. 19, pp. 1183–1186.CrossRefGoogle Scholar - 15.T. Gnäupel-Herold, D. Liu, and H. Prask: in
*NIST Center for Neutron Research Highlights 2007*, 2007.Google Scholar - 16.O. Benafan, S.A. Padula II, H.D. Skorpenske, K. An, and R. Vaidyanathan:
*Rev. Sci. Instrum*., 2014, vol. 85, p. 103901.CrossRefGoogle Scholar - 17.S.V. Petegem, J. Wagner, T. Panzner, M. Upadhyay, T. Trang, and H.V. Swygenhoven:
*Acta Mater*., 2016, vol. 105, pp. 404–416.CrossRefGoogle Scholar - 18.A. Creuziger, M. Iadicola, T. Foecke, E. Rust, and D. Banerjee:
*J. Mater*., 2017, vol. 69, pp. 902–906.Google Scholar - 19.M. Kubo, H. Yoshida, A. Uenishi, S. Suzuki, Y. Nakazawa, T. Hama, and H. Takuda:
*ISIJ Int*., 2016, vol. 56, pp. 669–677.CrossRefGoogle Scholar - 20.A. Makinde, L. Thibodeau, and K. Neale:
*Exp. Mech*., 1992, vol. 32, pp. 138–144.CrossRefGoogle Scholar - 21.G. Hommer and A. Stebner: in
*Fracture, Fatigue, Failure and Damage Evolution*, A. Beese, A. Zehnder, and S. Xia, eds., Springer, Cham, 2016, pp. 45–50.CrossRefGoogle Scholar - 22.D. Collins, M. Mostafavi, R. Todd, T. Connolley, and A. Wilkinson:
*Acta Mater*., 2015, vol. 90, pp. 46–58.CrossRefGoogle Scholar - 23.T. Erinosho, D. Collins, A. Wilkinson, R. Todd, and F. Dunne:
*Int. J. Plast*., 2016, vol. 83, pp. 1–18.CrossRefGoogle Scholar - 24.M. Brieu, J. Diani, and N. Bhatnagar:
*J. Test. Eval*., 2007, vol. 35, pp. 364–372.Google Scholar - 25.D. Collins, T. Erinosho, F. Dunne, R. Todd, T. Connolley, M. Mostafavi, H. Kupfer, and A. Wilkinson:
*Acta Mater*., 2017, vol. 124, pp. 290–304.CrossRefGoogle Scholar - 26.G. Geandier, D. Thiaudiere, R.N. Randriamazaoro, R. Chiron, S. Djaziri, B. Lamongie, Y. Diot, E. Le Bourhis, P.O. Renault, P. Goudeau, A. Bouaffad, O. Castelnau, D. Faurie, and F. Hild:
*Rev. Sci. Instrum*., 2010, vol. 81, p .103903.CrossRefGoogle Scholar - 27.G. Geandier, D. Faurie, P.O. Renault, D. Thiaudiere, and E. Le Bourhis:
*J. Appl. Crystallogr*., 2014, vol. 47, pp. 181–187.CrossRefGoogle Scholar - 28.S. Djaziri, D. Faurie, P.O. Renault, E. Le Bourhis, P. Goudeau, G. Geandier, and D. Thiaudiere:
*Acta Mater*., 2013, vol. 61, pp. 5067–5077.CrossRefGoogle Scholar - 29.S. Djaziri, P.O. Renault, E. Le Bourhis, P. Goudeau, D. Faurie, G. Geandier, C. Mocuta, and D. Thiaudiere:
*J. Appl. Phys*., 2014. https://doi.org/10.1063/1.4894616Google Scholar - 30.J. Capek, T. Panzner, K. Sofinowski, D. Drozdenko, and K. Mthis: in
*Magnesium Technology 2018*, D. Orlov, V. Joshi, K. Solanki, and N. Neelameggham, eds., Springer, Cham, 2018, pp. 199–202.CrossRefGoogle Scholar - 31.S.V. Petegem, A. Guitton, M. Dupraz, A. Bollhalder, K. Sofinowski, M. Upadhyay, and H.V. Swygenhoven:
*Exp. Mech*., 2017, vol. 57, pp. 569–580.CrossRefGoogle Scholar - 32.K. Chatterjee, J. Kob, J.J.T. Weiss, H. Philipp, J. Becker, C. Purohit, S. Gruner, and A. Beaudoin:
*J. Mech. Phys. Solids*, 2017, vol. 109, pp. 95–116.CrossRefGoogle Scholar - 33.G. Hommer, J. Park, P. Collins, A. Pilchak, and A. Stebner: in
*Advancement of Optical Methods in Experimental Mechanics*, S. Yoshida, L. Lamberti, and C. Sciammarella, eds., Springer, Cham, 2017, vol. 3, pp. 6–70.Google Scholar - 34.W.-N. Hsu, E. Polatidis, M. Smid, N. Casati, S.V. Petegem, and H.V. Swygenhoven:
*Acta Mater*., 2018, vol. 144, pp. 874–883.CrossRefGoogle Scholar - 35.E. Polatidis, W. Hsu, M. Smid, T. Panzner, S. Chakrabarty, P. Pant, and H.V. Swygenhoven:
*Scripta Mater*., 2018, vol. 147, pp. 27–32.CrossRefGoogle Scholar - 36.P.R. Dawson and D.E. Boyce:
*Metall and Mat Trans A*., 2018. https://doi.org/10.1007/s11661-018-5085-2.Google Scholar - 37.A.C. Poshadel, M. Gharghouri, and P.R. Dawson: Sensitivity of crystal stress distributions to the definition of virtual two-phase microstructures, 2017. arXiv:1707.08962v1 [cond-mat.mtrl-sci].
- 38.R. Quey, P.R. Dawson, and F. Barbe:
*Comput. Methods Appl. Mech. Eng*., 2011, vol. 200, pp. 1729–1745.CrossRefGoogle Scholar - 39.A.D. Rollett, S.B. Lee, R. Campman, and G.S. Rohrer:
*Annu. Rev. Mater. Res*., 2007, vol. 37, pp. 627–658.CrossRefGoogle Scholar - 40.H. Ledbetter: in
*Handbook of Elastic Properties of Solids, Liquids, and Gases*, M. Levy, ed., Academic, New York, 2001, vol. 3, pp. 291–297.Google Scholar - 41.G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., M.I.T. Press, Cambridge, MA, 1971.Google Scholar
- 42.H. Ritz, P. Dawson, and T. Marin:
*J. Mech. Phys. Solids*, 2010, vol. 58, pp. 54–72.CrossRefGoogle Scholar - 43.A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock:
*Metall. Mater. Trans. A*, 2006, vol. 37A, pp. 1875–1886.CrossRefGoogle Scholar