Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 357–376 | Cite as

Modeling of the Dynamic Recrystallization Kinetics of a Continuous Casting Slab Under Heavy Reduction

  • Qi Yang
  • Cheng JiEmail author
  • Miaoyong Zhu


Heavy reduction (HR) is used to implement a large reduction amount to improve the internal quality and refine the microstructure of continuous casting billets with large section sizes. In this paper, microstructural evolution and dynamic recrystallization (DRX) kinetic models for continuous casting slabs under HR were investigated for an experimental temperature range from [1173 K to 1573 K (900 °C) to (1300 °C)] and strain rates of 0.001 to 0.1 s−1. Based on the experimental data, various DRX kinetics models for a continuous casting slab as functions of the strain rate, strain, initial austenite grain size, and temperature were established to predict DRX-induced softening behaviors. A comparison of the new modified model, with Laasraoui and Jonas’s model, the modified Yoda’s model, and Liu’s model, revealed that the new modified model is the most suitable model for a continuous casting slab under HR. Based on this research, constitutive models with the characteristics of DRX and dynamic recovery (DRV) were established to predict the flow stress curve with the parameters of the strain rate (\( \dot{\varepsilon } \)), deformation temperature (T), and the initial austenite grain size (d0). Moreover, the microstructural evolution of a tested slab after hot compression tests was investigated by optical microscopy and a DRX grain size model under different deformation conditions was established.



Heavy reduction


Soft reduction


Dynamic recrystallization


Dynamic recovery


Work hardening


Zener–Hollomon parameter \( \left(Z = \dot{\varepsilon }\exp \left( {\frac{Q}{\text{RT}}} \right)\right) \)

\( \theta \)

WH rate is the derivative of flow stress curves (\( \theta = {\text{d}}\sigma /{\text{d}}\varepsilon \))

\( \varepsilon_{\text{p}} \), \( \varepsilon_{\text{c}} \)

Peak strain and critical strain, MPa

\( \varepsilon^{*} \)

Strain when the velocity of DRX is maximum

\( \varepsilon_{0.5} \)

Strain for 50 pct dynamic recrystallization

\( \sigma_{\text{DRV}} \), \( \sigma_{\text{DRX}} \)

The flow stress if the DRV and DRX is the main softening mechanism


Which is dependent on the deformation temperature and the strain rate, is the coefficient of DRV


Austenite grain size when the dynamic recrystallization occurs completely

\( \sigma_{\text{p}} \), \( \sigma_{\text{c}} \), \( \sigma_{0} \), \( \sigma_{\text{s}} \) and \( \sigma_{\text{ss}} \)

Peak stress, critical stress, yield stress, saturation stress, and steady-state stress, MPa

\( \dot{\varepsilon } \)

Strain rate, s−1


Temperature, K


Initial austenite grain size, μm


Flow stress, MPa


Deformation activation energy, J mol−1



The current study was financially supported by the National Natural Science Foundation of China under Grant Nos. 51474058 and U1708259; the Program for Liaoning Excellent Talents in University (LJQ2015036); and the Fundamental Research Funds for the Central Universities of China (N172504024). Special thanks are due to the cooperating company for industrial trials and application.


  1. 1.
    C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1-16.Google Scholar
  2. 2.
    C. Ji, C.H. Wu and M.Y. Zhu: JOM, 2016, vol. 68, pp. 3107-15.CrossRefGoogle Scholar
  3. 3.
    Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol, 2016, vol. 238, pp. 81-8.CrossRefGoogle Scholar
  4. 4.
    Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.Google Scholar
  5. 5.
    Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X. M. Chen and M.S. Chen: Mater. Sci. Eng., A, 2015, vol. 626, pp. 432-40.CrossRefGoogle Scholar
  6. 6.
    Y.W. Xu, D. Tang, Y. Song and X.G. Pan: Mater. Des., 2012, vol. 39, pp. 168-74.CrossRefGoogle Scholar
  7. 7.
    A. Momeni, K. Dehghani, H. Keshmiri and G.R. Ebrahimi: Mater. Sci. Eng., A, 2010, vol. 527, pp. 1605-11.CrossRefGoogle Scholar
  8. 8.
    S. Mandal, A.K. Bhaduri and V.S. Sarma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1062-72.CrossRefGoogle Scholar
  9. 9.
    N. Mortazavi, N. Bonora, A. Ruggiero and M.H. Colliander: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2555-9.CrossRefGoogle Scholar
  10. 10.
    S. Serajzadeh: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 1185-200.CrossRefGoogle Scholar
  11. 11.
    A.I. Fernández, P, Uranga, B, López and J.M. Rodriguez-Ibabe: Mater. Sci. Eng., A, 2003, vol. 361, pp. 367-76.CrossRefGoogle Scholar
  12. 12.
    X. Quelennec and J.J. Jonas: ISIJ Int., 2012, vol. 52, pp. 1145-52.CrossRefGoogle Scholar
  13. 13.
    A. Momeni, S.M. Abbas, M. Morakabati, H. Badri and X. Wang: Mater. Sci. Eng., A, 2014, vol. 615, pp. 51-60.CrossRefGoogle Scholar
  14. 14.
    G.R. Ebrahimi, H. Keshmiri, A.R. Maldar and A. Momeni: J. Mater. Sci. Technol., 2012, vol. 28, pp. 467-73.CrossRefGoogle Scholar
  15. 15.
    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang and H. Min: Mater. Des., 2014, vol. 57, pp. 568-77.CrossRefGoogle Scholar
  16. 16.
    A.N. Kolmogorov: Izv. Akad. Nauk. SSSR., 1937, vol. 3, pp. 355-59.Google Scholar
  17. 17.
    W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min.Metall. Engrs., 1939, vol. 135, pp. 416.Google Scholar
  18. 18.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103.CrossRefGoogle Scholar
  19. 19.
    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212.CrossRefGoogle Scholar
  20. 20.
    M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177.CrossRefGoogle Scholar
  21. 21.
    C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187-94.CrossRefGoogle Scholar
  22. 22.
    C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072-81.CrossRefGoogle Scholar
  23. 23.
    D.X. Wen, Y.C. Lin and Y. Zhou: Vacuum, 2017, vol. 141, pp. 316-27.CrossRefGoogle Scholar
  24. 24.
    G.Z. Quan, D.S.Wu, G.C. Luo, Y.F. Xia, J. Zhou, Q. Liu and L. Gao: Mater. Sci. Eng., A, 2014, vol. 589, pp. 22-33.Google Scholar
  25. 25.
    H. Yada and T. Senuma: J. Jpn. Soc. Technol. Plast., 1986, vol. 27, pp. 34.Google Scholar
  26. 26.
    S.I. Kim, Y. Lee, D.L. Lee and Y.C. Yoo: Mater. Sci. Eng., A, 2003, vol. 355, pp. 384-93.CrossRefGoogle Scholar
  27. 27.
    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 151-60.CrossRefGoogle Scholar
  28. 28.
    X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2013, vol. 85, pp. 811-23.CrossRefGoogle Scholar
  29. 29.
    M.N. Gong, H.J. Li, T.X. Li, B. Wang, and Z.D. Wang: Steel Res. Int., 2018, vol. 89, art. no. 1800025.Google Scholar
  30. 30.
    C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22-32.CrossRefGoogle Scholar
  31. 31.
    C.M. Sellars and W.M. Tegart: Acta Metall., 1966, vol. 14, pp. 1136-38.CrossRefGoogle Scholar
  32. 32.
    H.J. Mcqueen, S. Yue, N.D. Ryan and E. Fry: J. Mater. Process. Technol., 1995, vol. 53, pp. 293-310.CrossRefGoogle Scholar
  33. 33.
    Y. Han, H. Wu, W. Zhang, D.N. Zou, G.W. Liu and G.J. Qiao: Mater. Des., 2015, vol. 69, pp. 230-40.CrossRefGoogle Scholar
  34. 34.
    S. Saadatkia and H. Mirzadeh, and J.M. Cabrera: Mater. Sci. Eng., A, 2015, vol. A636, pp. 196-202.CrossRefGoogle Scholar
  35. 35.
    H.L. Wei and G.Q. Liu: Mater. Des., 2014, vol. 56, pp. 437-44.CrossRefGoogle Scholar
  36. 36.
    M. Shaban and B. Eghbali: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4320-25.CrossRefGoogle Scholar
  37. 37.
    Z.X. Xie, Q.Y. Liu, J.H. Yang and G.Y. Gan: J. Iron Steel Res., 2009, vol. 21, pp. 33-6 (in Chinese).Google Scholar
  38. 38.
    S.L. Zhu, H.Z. Cao, J.S. Ye, W.H. Hu, and G.Q. Zheng: J. Iron Steel Res. Int., 2015, vol. 22, pp. 264-71.CrossRefGoogle Scholar
  39. 39.
    E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 692-700.CrossRefGoogle Scholar
  40. 40.
    N. D. Ryan and H. J. McQueen: Can. Metall. Q., 1990, vol. 29, pp. 147.CrossRefGoogle Scholar
  41. 41.
    A. Yanagida and J. Yanagimoto: J. Mater. Process. Technol., 2004, vol. 151, pp. 33-8.CrossRefGoogle Scholar
  42. 42.
    Y.C. Lin, M.S. Chen and J. Zhang: Mech. Res. Commun., 2008, vol. 35, pp. 142-50.CrossRefGoogle Scholar
  43. 43.
    A. Najafizadeh and J.J. Jonas: ISIJ Int., 2006, vol. 46, pp. 1679-84.CrossRefGoogle Scholar
  44. 44.
    M. Wahabi, J.M. Cabrera and J.M. Prado: Mater. Sci. Eng., A, 2003, vol. 343, pp. 116-25.CrossRefGoogle Scholar
  45. 45.
    L.X. Kong, P.D. Hodgson and B. Wang: J. Mater. Process. Technol., 1999, vol. 90, pp. 44-50.CrossRefGoogle Scholar
  46. 46.
    Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu: J. Mater. Sci. Technol., 2011, vol. 27, pp. 913-19.CrossRefGoogle Scholar
  47. 47.
    F. Kocks and H. Mecking: Acta Metall., 1981, vol. 29, pp. 1865-75.CrossRefGoogle Scholar
  48. 48.
    Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.CrossRefGoogle Scholar
  49. 49.
    Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193-200.CrossRefGoogle Scholar
  50. 50.
    S. Serajzadeh and A.K. Taheri: Mech. Res. Commun., 2003, vol. 30, pp. 87-93.CrossRefGoogle Scholar
  51. 51.
    R. Kopp, M.L. Cao and M.D. Souza: in Proceedings of the Second International Conference on Technology of Plasticity, 1987, pp. 1129–34.Google Scholar
  52. 52.
    J. Liu, Z. Cui and L. Ruan: Mater. Sci. Eng., A, 2011, vol. 529, pp. 300-10.CrossRefGoogle Scholar
  53. 53.
    V. Torabinejad, A. Zarei-Hanzaki, and S. Moemeni: Mater. Manuf. Process., 2012, vol. 28, pp. 36-41.CrossRefGoogle Scholar
  54. 54.
    D.Z. Li, Y.H. Wei, C.Y. Liu, and L.F. Hou: Steel Res. Int., 2013, vol. 84, pp. 740-50.CrossRefGoogle Scholar
  55. 55.
    Y.C. Lin, Y.X. Lin, G. Liu, M.S. Chen and Y.C. Huang: J. Mater. Eng. Perform., 2015, vol. 24, pp. 221-8.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations