Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 104–117 | Cite as

A Comparative Study of Kinetic Models Regarding Bainitic Transformation Behavior in Carburized Case Hardening Steel 20MnCr5

  • J. DamonEmail author
  • F. Mühl
  • S. Dietrich
  • V. Schulze
Article
  • 85 Downloads

Abstract

Isothermal bainite transformation kinetics have been carried out and evaluated for the case hardening steel 20MnCr5 with the carbon content ranging between 0.2 and 0.8 wt pct in a wide span of isothermal temperatures. Multiple austenitization temperatures were chosen to investigate the effect of austenitic grain coarsening on the effect of transformation kinetics. Three well-known transformation kinetic equations were evaluated on more than 60 transformation curves, the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, the Austin–Rickett (AR) equation, as well as an autocatalytic (AC) model proposed by van Bohemen. In terms of fit quality, the AR kinetic is superior, although all models show a good accordance with experimental data. The results demonstrate that the interpretability of overall activation energies can be highly ambiguous. Also, an increase for the growth exponent of JMAK/AR equations was found with a scatter of values between 1.5–4.5 and 2.0–6.0, respectively. This finding demonstrates that the value of the growth exponent cannot be interpreted in terms of growth dimension of the bainitic subunits. Furthermore, the kinetic model on a diffusionless approach was evaluated, and the activation energies were compared to work from van Bohemen. Due to the consideration of the grain size on the delay of transformation a surprisingly constant OAE was evaluated for every alloy irrespective of the austenitization temperature. Also, found OAE values are close to findings by van Bohemen with approx. 190 to 200 kJ/mol. Finally, an exponential dependency of the autocatalytic factor with respect to carbon content was proposed.

Notes

Acknowledgements

This research was supported by the German Research Foundation (DFG) program in the framework of the Research Training Group GRK 1483. The authors also want to thank Daniel Kaiser for his expertise in dilatometric studies as well as interpreting mathematical aspects of kinetic models.

References

  1. 1.
    M. Avrami, The Journal of Chemical Physics 7(12), 1103–1112 (1939)CrossRefGoogle Scholar
  2. 2.
    J.B. Austin, R.L. Rickett, Trans. Am. Inst. Min. Eng. 135, 396 (1939)Google Scholar
  3. 3.
    E.J. Mittemeijer, Journal of Materials Science 27(15), 3977–3987 (1992)CrossRefGoogle Scholar
  4. 4.
    D. Quidort, Y. Bréchet, Scripta Materialia 47(3), 151–156 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Umemoto, K. Horiuchi, I. Tamura, Tetsu-to-Hagane 68(3), 461–470 (1982)CrossRefGoogle Scholar
  6. 6.
    N.V. Luzginova, L. Zhao, J. Sietsma, Materials Science and Engineering: A 481–482, 766–769 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Sourmail, V. Smanio, Acta Materialia 61(7), 2639–2648 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Caballero, M.J. Santofimia, C. Garcia de Andres, Materials Transactions 45(12), 3272–3281 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Kang, M. Zhang, F. Liu, M. Zhu, Materials Transactions 50(1), 123–129 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Vasudevan, L.W. Graham, H.J. Axon, J. Iron Steel Inst 1958(190), 386 (1958)Google Scholar
  11. 11.
    S.V. Radcliffe, E.C. Rollason, J. Iron Steel Inst. 191, 56 (1959)Google Scholar
  12. 12.
    D.G. Yu, D.K. Shi, Institution of EMES (China Machine Press, Wuhan, 1996), p. 105Google Scholar
  13. 13.
    J. Barford: J. Iron Steel Inst., 1996, vol. 204, p. 609.Google Scholar
  14. 14.
    A. Borgenstam and M. Hillert: Acta Mater., 1997, vol. 45, p. 651.Google Scholar
  15. 15.
    H. Li, K. Gai, L. He, C. Zhang, H. Cui, M. Li, Materials & Design 92, 731–741 (2016)CrossRefGoogle Scholar
  16. 16.
    H.E. Kissinger, Analytical Chemistry 29(11), 1702–1706 (1957)CrossRefGoogle Scholar
  17. 17.
    S.F. Medina, P. Fabregue, Journal of Materials Science 26(20), 5427–5432 (1991)CrossRefGoogle Scholar
  18. 18.
    M. Hillert, Acta Metallurgica 7(10), 653–658 (1959)CrossRefGoogle Scholar
  19. 19.
    H. Bhadeshia, A.R. Waugh, Acta Metallurgica 30(4), 775–784 (1982)CrossRefGoogle Scholar
  20. 20.
    M.J. Santofimia, F.G. Caballero, C. Capdevila, C. García-Mateo, C.G. Andrés, Materials Transactions 47(10), 2465–2472 (2006)CrossRefGoogle Scholar
  21. 21.
    G.I. Rees, H.K.D.H. Bhadeshia, Materials Science and Technology 8(11), 994–1003 (2013)CrossRefGoogle Scholar
  22. 22.
    S.B. Singh: Ph.D Thesis, University of Cambridge, 1998.Google Scholar
  23. 23.
    H. Matsuda, H.K.D.H. Bhadeshia, Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences 460(2046), 1707–1722 (2004)CrossRefGoogle Scholar
  24. 24.
    S.M.C. van Bohemen, J. Sietsma, International Journal of Materials Research 99(7), 739–747 (2008)CrossRefGoogle Scholar
  25. 25.
    A.M. Ravi, J. Sietsma, M.J. Santofimia, Acta Materialia 105, 155–164 (2016)CrossRefGoogle Scholar
  26. 26.
    M.J. Santofimia, F.G. Caballero, C. Capdevila, C. Garcıa de Andrés, C. García-Mateo, Materials Transactions 47(6), 1492–1500 (2006)CrossRefGoogle Scholar
  27. 27.
    E. Pereloma, D.V. Edmonds, Phase Transformations in Steels: Fundamentals and Diffusion-controlled Transformations (Woodhead Pub Ltd, Oxford, 2016)Google Scholar
  28. 28.
    H.K.D.H. Bhadeshia, J.W. Christian, Metallurgical Transactions A 21(3), 767–797 (1990)CrossRefGoogle Scholar
  29. 29.
    D. Quidort, Y. Brechet, ISIJ International 42(9), 1010–1017 (2002)CrossRefGoogle Scholar
  30. 30.
    H. Bhadeshia, Scripta Metallurgica 21(11), 1605–1609 (1987)CrossRefGoogle Scholar
  31. 31.
    H.K.D.H. Bhadeshia: J. Phys. Colloques, 1982, vol. 43(C4), pp. C4-443–C4-448.Google Scholar
  32. 32.
    H.I. Aaronson, W.T. Reynolds, G.R. Purdy, Metall. Mater. Trans. A 35(4), 1187–1210 (2004)CrossRefGoogle Scholar
  33. 33.
    F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, International Materials Reviews 52(4), 193–212 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Yang, W.E. Wood, J. Dehaven and M. Li: Heat Treating Proceedings of the 18th Conference, pp. 476–483, 1998.Google Scholar
  35. 35.
    M.J. Starink, Journal of Materials Science 32(15), 4061–4070 (1997)CrossRefGoogle Scholar
  36. 36.
    C. Magee: Phase Transformations, American Society of Metals, Metals Park, OH, 1970, p. 115.Google Scholar
  37. 37.
    E. Kozeschnik, J. Svoboda, P. Fratzl, F.D. Fischer, Materials Science and Engineering: A 385(1–2), 157–165 (2004)Google Scholar
  38. 38.
    J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Materials Science and Engineering: A 385(1–2), 166–174 (2004)Google Scholar
  39. 39.
    H.K.D.H. Bhadeshia: Bainite in Steels, Institute of Materials, London, 1992.Google Scholar
  40. 40.
    D.P. Koistinen, R.E. Marburger, Acta Metallurgica 7(1), 59–60 (1959)CrossRefGoogle Scholar
  41. 41.
    A.M. Ravi, J. Sietsma, M.J. Santofimia, Scripta Materialia 140, 82–86 (2017)CrossRefGoogle Scholar
  42. 42.
    K. Tsuzaki, C. Nakao, T. Maki, Materials Transactions 32(8), 658–666 (1991)CrossRefGoogle Scholar
  43. 43.
    H.K.D.H. Bhadeshia, Progress in Materials Science 57(2), 268–435 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Kaiser, B. de Graaff, S. Dietrich, V. Schulze, Thermochimica Acta 646, 8–15 (2016)CrossRefGoogle Scholar
  45. 45.
    C. Garcıa de Andrés, M. Bartolomé, C. Capdevila, D. San Martın, F. Caballero, V. López, Materials Characterization 46(5), 389–398 (2001)CrossRefGoogle Scholar
  46. 46.
    C. Garcıa de Andrés, F. Caballero, C. Capdevila, D. San Martın, Materials Characterization 49(2), 121–127 (2002)CrossRefGoogle Scholar
  47. 47.
    J. Orlich, A. Rose, P. Wieast, Materialwissenschaft und Werkstofftechnik 6(6), 215 (1975)Google Scholar
  48. 48.
    W. Köhler, Materials and Corrosion 6(12), 612 (1955)CrossRefGoogle Scholar
  49. 49.
    S. van Bohemen, Philosophical Magazine 93(4), 388–408 (2013)CrossRefGoogle Scholar
  50. 50.
    S. van Bohemen, Metallurgical and Materials Transactions A 41(2), 285 (2009)Google Scholar
  51. 51.
    J. Kučera, K. Stránský, Materials Science and Engineering 52(1), 1–38 (1982)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Institute of Applied Materials (IAM-WK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations