Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 336–347 | Cite as

Hardening Low-Carbon Steels by Engineering the Size and Distribution of Inclusions

  • Huigai LiEmail author
  • Liuxing Wang
  • Haitao Xiao
  • Jiali Xu
  • Shaobo Zheng
  • Qijie Zhai
  • Ke Han


Ultra-hard low-carbon steels usually need many processing steps after casting. This paper introduces a single-step direct-cast hardening (DiCH) method for making ultra-hard, low-carbon steels by manipulating two variables: free oxygen content before solidification and cooling rate during solidification. Without any post-casting steps required to enhance hardness, DiCH produced property-gradient steel with high surface hardness (4.2 GPa Vickers) directly from liquid metal. The optimum size, number, and distribution of oxide inclusions were achieved in condition of intermediate oxygen content (25 to 45 ppm) and high cooling rate (≥ 550K/s). Ultra-high hardness was achieved at the surface of DiCH samples with a mixture of refined acicular ferrite (AF) and martensite-like ferrite (MF). Two factors contributed to refinement of microstructure and enhancement of hardness: a high cooling rate during the solidification process, and a high density of submicron oxide inclusions in the cast steel. At cooling rates higher than 2500 K/s, refined AF and MF was obtained, accompanied by high densities (up to 600/mm2) of multiple-component, Ti-containing oxides of sizes between 0.5 and 0.7 μm.



This work was supported by the National Natural Science Foundation of China (No. U1460103). Support was also provided by the Instrumental Analysis & Research Center in Shanghai University. The manuscript was finalized when Dr. Li worked as a visiting scholar at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490, the State of Florida, and DOE. Our thanks to Dr. Mary Tyler for editing.


  1. 1.
    D. J. Sosinsky, P. Campbell, R. Mahapatra, W. Blejde and F. Fisher: Metallurgist, 2008, vol. 52, pp. 691-699.CrossRefGoogle Scholar
  2. 2.
    S. L. Shrestha, K. Y. Xie, C. Zhu and S. P. Ringer, C Killmore: Materials Science and Engineering A, 2013, vol. 568, pp. 88-95.CrossRefGoogle Scholar
  3. 3.
    Z. Z. Wang, K. Carpenter, Z. X. Chen and C. Killmore: Materials Science and Engineering A, 2017, vol. 700, pp. 234-240.CrossRefGoogle Scholar
  4. 4.
    W. L. Costin, O Lavigne, A Kotousov: Materials Science & Engineering A, 2016, vol. 663, pp. 193-203.CrossRefGoogle Scholar
  5. 5.
    D.V. Doane, J.S. Kirkaldy: Hardenability concepts with applications to steel, 1nd ed. Metallurgical Society of AIME, Chicago, 1978, pp. 229.Google Scholar
  6. 6.
    G. Krauss: Materials Science & Engineering A, 1999, vol. 273–275(99), pp. 40-57.CrossRefGoogle Scholar
  7. 7.
    H. F. Wang, F. Xia: Iron, 1984, vol. 10, pp. 39-44.Google Scholar
  8. 8.
    C. F. Wang, M. Q. Wang, J. Shi, W. J. Hui, H. Dong: Iron & Steel, 2007, vol. 42(11), pp. 57-60.Google Scholar
  9. 9.
    H. Ohta, H. Suito: ISIJ International, 2006, vol. 46(1), pp. 42-49.CrossRefGoogle Scholar
  10. 10.
    H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka: ISIJ International, 1994, vol. 34(5), pp. 414-419.CrossRefGoogle Scholar
  11. 11.
    H. Yu, J. Li: International Journal of Minerals Metallurgy & Materials, 2015, vol. 22(11), pp. 1157-1162.CrossRefGoogle Scholar
  12. 12.
    L. Q. Deng, S. L. Zou, D. W. Tang, Y. P. Xie, D. Zhang: Cast. Technol. Chin., 2016, 9:1807-1811.Google Scholar
  13. 13.
    D.J. Sosinsky, P. Campbell, R. Mahapatra, W. Blejde, F. Fisher: Metallurgist, 2008, vol. 52 (11-12), pp. 691-699.CrossRefGoogle Scholar
  14. 14.
    Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford: Material Science & Engineering A, 2016, vol. 651, pp. 291-305.CrossRefGoogle Scholar
  15. 15.
    S Ge, S Chang, T Wang, LE Calzado, M Isac: Transactions of the Iron & Steel Institute of Japan, 2014, vol. 54(3), pp. 1-12.Google Scholar
  16. 16.
    J. S. Byun, J. H. Shim, J. Y. Suh, Y. J. Oh, Y. W. Cho: Mater. Sci. Eng. A, 2001, s 319–321(00), 326-331.CrossRefGoogle Scholar
  17. 17.
    CR Killmore, A Phillips, H Creely, H Kaul, P Campbell: Iron Steel Technol., 2007, vol. 10(10):90.Google Scholar
  18. 18.
    H. T. Liu, Z. Y. Liu, Y. Q. Qiu, G. M. Cao: Materials Characterization, 2009, vol. 60(1), pp. 79-82.CrossRefGoogle Scholar
  19. 19.
    D. S. Sarma, A. V. Karasev, P. G. Jonsson: Transactions of the Iron & Steel Institute of Japan, 2009, vol. 49(7), pp. 1063-1074.CrossRefGoogle Scholar
  20. 20.
    J. S. Byun, J. H. Shim, Y. W. Cho, D. N. lee: Acta Materialia, 2003, vol. 51(6), pp.1593-1606.CrossRefGoogle Scholar
  21. 21.
    S. St-Laurent: Materials Science & Engineering A, 1992, vol. 149(2), pp. 203-16.CrossRefGoogle Scholar
  22. 22.
    W. Mu, H. Mao, H. Jonsson and K. Nakajima: Steel Research International, 2016, vol. 87(3), pp.311-319.CrossRefGoogle Scholar
  23. 23.
    D. Loder, S. K. Michelic and C. Bernhard: Journal of Materials Science Research, 2017, vol. 6(1), pp. 24-43.CrossRefGoogle Scholar
  24. 24.
    Z. Xiong, S. Liu, X. Wang, C. Shang, R. D. K. Misra: Materials Characterization, 2015, vol. 106, pp. 232-239.CrossRefGoogle Scholar
  25. 25.
    Y. Li, X. L. Wan, W. Y. Lu, A. A. Shirzadi, O. Isayev: Materials Science & Engineering A, 2016, vol. 659, pp. 179-187.CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, R. A. Farrar: Materials Science & Technology, 1996, vol. 12(3), pp. 237-260.CrossRefGoogle Scholar
  27. 27.
    B. Kim, S. Uhm, C. Lee, J. Lee, Y. An: Journal of Engineering Materials & Technology, 2005, vol. 127(2), pp. 204-213.CrossRefGoogle Scholar
  28. 28.
    A. Suzuki, T. Suzuki, Y. Nagaoka, Y. Iwata: Journal of the Japan Institute of Metals, 1968, vol. 32(12), pp. 1301-1305.CrossRefGoogle Scholar
  29. 29.
    H. F. Huang, J. Li, D. H. Li, R. D. Liu, G. H. Lei: Journal of Nuclear Materials, 2014, vol. 454(1-3), pp.168-172.CrossRefGoogle Scholar
  30. 30.
    W. C. Oliver, G. M. Pharr: Journal of Materials Research, 2004, vol.19(1), pp.3-20.CrossRefGoogle Scholar
  31. 31.
    E. O. Hall: Proceedings of the Physical Society, 2002, vol. 64(6), p. 495.Google Scholar
  32. 32.
    H. Huang, C. Yang, M. D. L. Reyes, Y. Zhou, L. Yan: Journal of Materials Science & Technology, 2015, vol. 31(9), pp. 923-929.CrossRefGoogle Scholar
  33. 33.
    L. Hao. N. Xiao, C. Zheng, D. Li: Journal of Materials Science & Technology, 2010, vol. 26(12), pp.1107-1113.CrossRefGoogle Scholar
  34. 34.
    W. Vandermeulen, R. W. Bosch, F. Snijkers: Journal of Materials Science, 2015, vol.50(7), pp.2932-2943.CrossRefGoogle Scholar
  35. 35.
    E. Breval, G. C. Dodds, N. H. Macmillan: Materials Research Bulletin, 1985, vol. 20(4), pp. 413-429.CrossRefGoogle Scholar
  36. 36.
    M. Dao, N. Chollacoop, K. J. V. Vliet, T. A. Venkatesh, S. Suresh: Acta Materialia, 2001, vol. 49(19), pp. 3899-3918.CrossRefGoogle Scholar
  37. 37.
    K. Han, D.V. Edmonds, G.D.W. Smith: Metallurgical and Materials Transactions A, 2001, vol. 32(6), pp.1313-1324.CrossRefGoogle Scholar
  38. 38.
    P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle and P.D. Hodgson: Metallurgical and Materials Transactions A, 2002, vol. 33(5), pp. 1331–1349.CrossRefGoogle Scholar
  39. 39.
    D. Loder, S. K. Michelic and C. Bernhard: Journal of Materials Science Research, 2017, vol. 6(1), pp. 24-43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Huigai Li
    • 1
    Email author
  • Liuxing Wang
    • 1
  • Haitao Xiao
    • 1
  • Jiali Xu
    • 1
  • Shaobo Zheng
    • 1
  • Qijie Zhai
    • 1
  • Ke Han
    • 2
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations