Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 513–517 | Cite as

Modified Kocks–Mecking–Estrin Model to Account Nonlinear Strain Hardening

  • Krishnaswamy HariharanEmail author
  • Frederic Barlat
Communication
  • 179 Downloads

Abstract

The dislocation density-based model after Kocks–Mecking–Estrin (KME) is widely used to characterize the thermally activated plastic deformation and dislocation kinetics. According to the model, the slope of the stress–strain curve decreases linearly with stress, which contradicts the experimental observation. In the current study, the evolution of dislocation density in the model is generalized to account for the nonlinearity of the slope.

References

  1. 1.
    U.F. Kocks and H. Mecking: Prog. Mater. Sci., 48 (3), pp. 171–273 (2003)CrossRefGoogle Scholar
  2. 2.
    Y. Estrin, H. Mecking, Acta Metall. 32(I), 57 (1984)CrossRefGoogle Scholar
  3. 3.
    E. Hart, Acta Metall. 18, 599 (1970)CrossRefGoogle Scholar
  4. 4.
    J. Swearengen, R. Rohde, D. Hicks, Acta Metall. 24, 969 (1976)CrossRefGoogle Scholar
  5. 5.
    K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)CrossRefGoogle Scholar
  6. 6.
    E.F. Rauch, J.J. Gracio, F. Barlat, Acta Mater. 55, 2939 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Hariharan, M.J. Kim, S.T. Hong, D. Kim, J.H. Song, M.G. Lee, H.N. Han, Mater. Des. 124, 131 (2017)CrossRefGoogle Scholar
  8. 8.
    D.L. Holt, J. Appl. Phys. 41(8), 3197 (1970)CrossRefGoogle Scholar
  9. 9.
    H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)CrossRefGoogle Scholar
  10. 10.
    L.E. Lindgren, K. Domkin, S. Hansson, Mech. Mater. 40(11), 907 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Estrin, J. Mater. Process. Technol. 80-81, 33 (1998)CrossRefGoogle Scholar
  12. 12.
    E. Nes, Prog. Mater. Sci. 41(3), 129 (1997)CrossRefGoogle Scholar
  13. 13.
    Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet, Acta Mater. 46(15), 5509 (1998)CrossRefGoogle Scholar
  14. 14.
    A. Ma, F. Roters, Acta Mater. 52(12), 3603 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Barlat, M.V. Glazov, J.C. Brem, D. Lege, Int. J. Plast. 18(7), 919 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Gracio, J. Fernandes, J. Schmitt, Mater. Sci. Eng. A 118, 97 (1989)CrossRefGoogle Scholar
  17. 17.
    C. Keller, E. Hug, Int. J. Plast. 98, 106 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Greenberg, Advanced Engineering Mathematics, 2nd edn. (Pearson Education Inc., 1998)Google Scholar
  19. 19.
    M.R. Staker, D.L. Holt, Acta Metall. 20(4), 569 (1972)CrossRefGoogle Scholar
  20. 20.
    L.E. Lindgren, Q. Hao, D. Wedberg, Mech. Mater. 108, 68 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Kok, A.J. Beaudoin, D.A. Tortorelli, Acta Mater. 50(7), 1653 (2002)CrossRefGoogle Scholar
  22. 22.
    E.I. Galindo-Nava, P.E. Rivera-Díaz-Del-Castillo, Acta Mater. 60(11), 4370 (2012)CrossRefGoogle Scholar
  23. 23.
    D.A. Hughes, Q. Liu, D.C. Chrzan, N. Hansen, Acta Mater. 45(1), 105 (1997)CrossRefGoogle Scholar
  24. 24.
    A. Molinari, G. Ravichandran, Mech. Mater. 37(7), 737 (2005)CrossRefGoogle Scholar
  25. 25.
    B. Babu, L.E. Lindgren, Int. J. Plast. 50, 94 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Zamani, H. Dini, A. Svoboda, L.E. Lindgren, S. Seifeddine, N.E. Andersson, A.E.W. Jarfors, Int. J. Mech. Sci. 121(December 2016), 164 (2017)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Graduate Institute of Ferrous Technology, POSTECHPohangRepublic of Korea

Personalised recommendations