Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 326–335 | Cite as

Controlled Diffusion Solidification Pathway of an AA 7xxx Series Aluminum Alloy

  • Mohammad Pourgharibshahi
  • Hassan SaghafianEmail author
  • Mehdi Divandari
  • Giulio Timelli


The solidification path of a controlled diffusion solidification (CDS) mixture based on the determination of a common cooling curve cannot be easily studied. This is due to the interference caused by convectional flows through temperature distribution and loss of the liquidus temperature. In this work, the lost stage of the CDS pathway for an AA 7xxx series aluminum alloy has been defined both experimentally and by the use of a Scheil solidification curve for high thermal-mass alloy. The solidification path (Tfs curve) of the alloy shifts to higher temperatures as a result of CDS processing which indicates an alternative form of higher-kinetics nucleation and growth. As a result of the increase in the nucleation temperature, the solidification interval can be larger than that of the conventional alloy. In comparison with the conventional solidification, CDS promotes the coherency fraction solid, while it has no effect on the coherency temperature.



The authors would like to thank Dr. Alberto Fabrizi from the Department of Management and Engineering at the University of Padova for assistance with the FEG-SEM studies.


  1. 1.
    US 7201210B2: 2003.Google Scholar
  2. 2.
    R. Ghiaasiaan, X. Zeng, and S. Shankar: Mater. Sci. Eng. A, 2014, vol. 594, pp. 260–77.CrossRefGoogle Scholar
  3. 3.
    A. Khalaf, P. Ashtari, and S. Shankar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 843–9.CrossRefGoogle Scholar
  4. 4.
    S.A. Kahtani, H.W. Doty, F.H. Samuel: Int. J. Cast Met. Res., 2014, 27, 38–48.CrossRefGoogle Scholar
  5. 5.
    A.M. Samuel, G.H. Garza-Elizondo, H.W. Doty, and F.H. Samuel: Mater. Des., 2015, vol. 80, pp. 99–108.CrossRefGoogle Scholar
  6. 6.
    K. Symeonidis: Ph.D. Thesis, Worcester Polytechnic Institute, Massachusett, USA, 2009.Google Scholar
  7. 7.
    R. Ghiaasiaan, S. Shankar, and D. Apelian: in Shape Casting: 5th International Symposium 2014, Wiley, Hoboken, NJ, USA, 2014, pp. 89–97.Google Scholar
  8. 8.
    M. Pourgharibshahi, M. Divandari, H. Larijani, P. Ashtari: J. Mater. Process. Technol., 2017, 250, 203–19.CrossRefGoogle Scholar
  9. 9.
    J.A. Dantzig, M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.CrossRefGoogle Scholar
  10. 10.
    D.H. StJohn, A. Prasad, M.A. Easton, M. Qian: Metall. Mater. Trans. A 2015, 46, 4868–85.CrossRefGoogle Scholar
  11. 11.
    R. Ghiaasiaan, S. Shankar, and D. Apelian: in Shape Casting: 5th International Symposium, 2014, pp. 89–97.Google Scholar
  12. 12.
    L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1: Wrought Alloys, Skan Aluminium, Oslo, Norway, 1986.Google Scholar
  13. 13.
    Y.A. Zholkov: Meas. Tech., 1961, vol. 4, pp. 983–5.CrossRefGoogle Scholar
  14. 14.
    B. Cini, E. Vinet, and P.J. Desre: Philos. Mag. A, 2000, vol. 80, pp. 955–66.CrossRefGoogle Scholar
  15. 15.
    P.J. Desré, E. Cini, and B. Vinet: J. Non. Cryst. Solids, 2001, vol. 288, pp. 210–7.CrossRefGoogle Scholar
  16. 16.
    B. Kun, H. Rui, L. Jinshan, and Z. Lian: Rare Met. Mater. Eng., 2014, vol. 43, pp. 1–5.Google Scholar
  17. 17.
    J. Dong, J.Z. Cui, Q.C. Le, and G.M. Lu: Mater. Sci. Eng. A, 2003, vol. 345, pp. 234–42.CrossRefGoogle Scholar
  18. 18.
    K. Xia and G. Tausig: Mater. Sci. Eng. A, 1998, vol. 246, pp. 1–10.CrossRefGoogle Scholar
  19. 19.
    P. Popel, U. Dahlborg, and M. Calvo-Dahlborg: in IOP Conference Series: Materials Science and Engineering, vol. 192, 2017.Google Scholar
  20. 20.
    V. V. Astaf, A.R. Kurochkin, T.I. Yablonskikh, I.G. Brodova, P.S. Popel: Met. Sci. Heat Treat., 2017, 59, 491–7.CrossRefGoogle Scholar
  21. 21.
    R. Ghiaasiaan: Ph.D. Thesis, McMaster University, Ontario, Canada, 2015.Google Scholar
  22. 22.
    M.B. Djurdjevic, Z. Odanovic, and N. Talijan: Jom, 2011, vol. 63, pp. 51–7.CrossRefGoogle Scholar
  23. 23.
    L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Vol. 2. Foundry Alloys, American Foundrymen’s Society, Inc., 1990.Google Scholar
  24. 24.
    J. Rakhmonov, G. Timelli, and F. Bonollo: Mater. Charact., 2017, vol. 128, pp. 100–8.CrossRefGoogle Scholar
  25. 25.
    J. Rakhmonov, G. Timelli, and F. Bonollo: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5510–21.CrossRefGoogle Scholar
  26. 26.
    H. Cruz, C. Gonzalez, A. Juárez, M. Herrera, and J. Juarez: J. Mater. Process. Technol., 2006, vol. 178, pp. 128–34.CrossRefGoogle Scholar
  27. 27.
    D. Emady, L.V. Whiting, M.. Djurdjevic, W.T. Kierkus, and J.. Sokolowski: Metal. J. Metall., 2004, vol. 10, pp. 91–106.CrossRefGoogle Scholar
  28. 28.
    S.H. Avner: Introduction to Physical Metallurgy, 2nd edn., McGraw Hill, New York, 1974.Google Scholar
  29. 29.
    P. Richet: The Physical Basis of Thermodynamics With Applications to Chemistry, Springer Science, New York, 2001.CrossRefGoogle Scholar
  30. 30.
    B. Cantor: Philos. Trans. R. 2003, 361, 409–17.CrossRefGoogle Scholar
  31. 31.
    Z. Fan: Metall. Mater. Trans. A 2013, 44, 1409–18.CrossRefGoogle Scholar
  32. 32.
    L. Coudurier, N. Eustathopoulos, and P. Desre: Fluid Phase Equilib., 1980, vol. 4, pp. 71–88.CrossRefGoogle Scholar
  33. 33.
    S.R. Lampman: Weld Integr. Perform., 1997, vol. 6, pp. 3–22.Google Scholar
  34. 34.
    D. Saha: Ph.D. Thesis, Worcester Polytechnic Institute, Massachusett, USA, 2005.Google Scholar
  35. 35.
    K. Symeonidis, D. Apelian, and M.M. Makhlouf: Metall. Sci. Technol. A, 2008, vol. 26, pp. 30–40.Google Scholar
  36. 36.
    A. Khalaf: Ph.D. Thesis, McMaster University, Ontario, Canada, 2010.Google Scholar
  37. 37.
    A. Khalaf: Acta Mater., 2016, vol. 103, pp. 301–10.CrossRefGoogle Scholar
  38. 38.
    A.D. Pelton, G. Eriksson, and C.W. Bale: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3113–29.CrossRefGoogle Scholar
  39. 39.
    W. Kurz and D. Fisher: Fundamentals of solidification. Trans Tech Publ., Aedermannsdorf, 1986, p. 287.Google Scholar
  40. 40.
    D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.CrossRefGoogle Scholar
  41. 41.
    M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 13–24.CrossRefGoogle Scholar
  42. 42.
    J.L. Murray: Bull. Alloy Phase Diagrams, 1983, vol. 4, pp. 55–73.CrossRefGoogle Scholar
  43. 43.
    B. Predel, ed.: in Landolt-Börnstein - Group IV Physical Chemistry, Springer-Verlag, Berlin/Heidelberg, 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Mohammad Pourgharibshahi
    • 1
  • Hassan Saghafian
    • 1
    Email author
  • Mehdi Divandari
    • 1
  • Giulio Timelli
    • 2
  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Management and EngineeringUniversity of PadovaVicenzaItaly

Personalised recommendations