Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 285–294 | Cite as

Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718

  • Pablo D. Enrique
  • Zhen Jiao
  • Norman Y. Zhou
Article

Abstract

The degradation of high-temperature components in the aerospace industry becomes a greater concern with the use of higher operating temperatures and increased operating cycles. Although the repair of defects can extend component lifespans, welding often results in a heat-affected zone (HAZ) or fusion zone with reduced mechanical properties. Due to the low energy input of electrospark deposition (ESD), repaired components should be less susceptible to mechanical property deterioration. ESD of alloy 718 on solution-annealed and aged alloy 718 base metal is evaluated in the as-deposited and direct-aged condition. HAZ formation is measured at 80 µm on an annealed substrate and 40 µm on an aged substrate. Direct aging of depositions eliminates the heat-affected zone and introduces strengthening phases in the deposition that results in a hardness equivalent to that of the aged base metal. The yield strength of as-deposited and direct-aged alloy 718 depositions is equivalent to the annealed and aged base metal, respectively, whereas the ultimate strength is, respectively, 16 and 8 pct lower. Decreased ultimate strength is attributed to lower fracture toughness of brittle secondary phases and splat boundaries from the ESD process that remain after the direct aging heat treatment.

Notes

Acknowledgments

This work was performed with funding support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Huys Industries, and the CWB Welding Foundation, in collaboration with the Centre for Advanced Materials Joining and the Multi-Scale Additive Manufacturing Lab at the University of Waterloo.

References

  1. 1.
    D.K. Huzel: Modern Engineering for Design of Liquid-Propellant Rocket Engines, American Institute of Aeronautics and Astronautics, 1992.Google Scholar
  2. 2.
    B.A. Cowles: Int. J. Fract., 1996, vol. 80, pp. 147–63.CrossRefGoogle Scholar
  3. 3.
    J.H. Perepezko: Science, 2009, vol. 326, pp. 1068–69.CrossRefGoogle Scholar
  4. 4.
    G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505–21.Google Scholar
  5. 5.
    D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives (2001), vol. 718, TMS, 2001, pp. 13–23.Google Scholar
  6. 6.
    R.E. Schafrik, D.D. Ward, and J.R. Groh: in Superalloys 718, 625, 706 and Various Derivatives (2001), TMS, 2001, pp. 1–11.Google Scholar
  7. 7.
    R.P. Jewett and J.A. Halchak: in Superalloys 718, 625 and Various Derivatives (1991), TMS, 1991, pp. 749–60.Google Scholar
  8. 8.
    A. Lešnjak and J. Tušek: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 391–96.CrossRefGoogle Scholar
  9. 9.
    J. Liu, R. Wang, and Y. Qian: Surf. Coatings Technol., 2005, vol. 200, pp. 2433–37.CrossRefGoogle Scholar
  10. 10.
    E. Anisimov, A.K. Khan, and O.A. Ojo: Mater. Charact., 2016, vol. 119, pp. 233–40.CrossRefGoogle Scholar
  11. 11.
    L.L. Parimi, G. Ravi, D. Clark, and M.M. Attallah: Mater. Charact., 2014, vol. 89, pp. 102–11.CrossRefGoogle Scholar
  12. 12.
    F. Liu, X. Lin, H. Leng, J. Cao, Q. Liu, C. Huang, and W. Huang: Opt. Laser Technol., 2013, vol. 45, pp. 330–35.CrossRefGoogle Scholar
  13. 13.
    E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, and D.S. Ng: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 5547–58.Google Scholar
  14. 14.
    K. Kulawik, P.A.A. Buffat, A. Kruk, A.M.M. Wusatowska-Sarnek, and A. Czyrska-Filemonowicz: Mater. Charact., 2015, vol. 100, pp. 74–80.CrossRefGoogle Scholar
  15. 15.
    P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: J. Mater. Process. Technol., 2018, vol. 258, pp. 138–43.CrossRefGoogle Scholar
  16. 16.
    X. Tingdong: Philos. Mag. Lett., 2006, vol. 86, pp. 501–10.CrossRefGoogle Scholar
  17. 17.
    K. Banerjee: Mater. Sci. Appl., 2011, vol. 02, pp. 1243–55.Google Scholar
  18. 18.
    J. Teimouri, S.R. Hosseini, and K. Farmanesh: Metallogr. Microstruct. Anal., 2018, vol. 7, pp. 268–76.CrossRefGoogle Scholar
  19. 19.
    X. Liu, J. Dong, X. Xie, and K.-M. Chang: Mater. Sci. Eng. A, 2001, vol. 303, pp. 262–66.CrossRefGoogle Scholar
  20. 20.
    M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie: Mater. Sci. Eng. A, 2017, vol. 679, pp. 48–55.CrossRefGoogle Scholar
  21. 21.
    G.F.V. Voort, J.W. Bowman, and R.B. Frank: Miner. Met. Mater. Socitety, 1994, pp. 489–98.Google Scholar
  22. 22.
    L.M. Suave, D. Bertheau, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, and J. Laigo: MATEC Web Conf., 2014, vol. 14, p. 21001.CrossRefGoogle Scholar
  23. 23.
    A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul: Mater. Des., 2013, vol. 52, pp. 791–800.CrossRefGoogle Scholar
  24. 24.
    Y. Ruan, A. Mohajerani, and M. Dao: Sci. Rep., 2016, vol. 6, pp. 1–11.CrossRefGoogle Scholar
  25. 25.
    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, ASM International, 2002.Google Scholar
  26. 26.
    R. Vincent: Acta Metall., 1985, vol. 33, pp. 1205–16.CrossRefGoogle Scholar
  27. 27.
    T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, and X. Liu: Corros. Sci., 2013, vol. 77, pp. 230–45.CrossRefGoogle Scholar
  28. 28.
    X. Li, J. Xie, and Y. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 3437–43.CrossRefGoogle Scholar
  29. 29.
    X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, and A. Birur: J. Mater. Sci., 2009, vol. 44, pp. 4557–71.CrossRefGoogle Scholar
  30. 30.
    S. Kou: Welding Metallurgy, Second Edition, John Wiley & Sons, Inc., Hoboken, 2003.Google Scholar
  31. 31.
    C.A. Huang, T.H. Wang, C.H. Lee, and W.C. Han: Mater. Sci. Eng. A, 2005, vol. 398, pp. 275–81.CrossRefGoogle Scholar
  32. 32.
    M. Sundararaman and P.J. Potdar: Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 477–86.Google Scholar
  33. 33.
    Y.-N. Zhang, X. Cao, P. Wanjara, and M. Medraj: J. Mater. Res., 2014, vol. 29, pp. 2006–20.CrossRefGoogle Scholar
  34. 34.
    C. Yeni and M. Koçak: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 546–57.CrossRefGoogle Scholar
  35. 35.
    R. Cortés, E.R.R. Barragán, V.H.H. López, R.R.R. Ambriz, and D. Jaramillo: Int. J. Adv. Manuf. Technol., 2017, vol. 94, pp. 3949–61.CrossRefGoogle Scholar
  36. 36.
    P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: Mater. Sci. Eng. A, 2018, vol. 729, pp. 268–75.CrossRefGoogle Scholar
  37. 37.
    J.J.S. Dilip and G.D. Janaki Ram: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45, pp. 182–92.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada
  2. 2.Huys Industries LtdWestonCanada

Personalised recommendations