Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 47–51 | Cite as

State of Grain Boundary Misorientation Due to Multiaxiality in Austenitic Stainless Steel

  • Rima Dey
  • Anindya Das
  • Soumitro Tarafder
  • S. Sivaprasad
Communication
  • 123 Downloads

Abstract

Electron backscatter diffraction was used to study grain character under multiaxiality. Nonproportional loading conditions employing a triangular and sinusoidal wavepath resulted in higher low-angle grain boundaries in austenitic stainless steel. Contrastingly, significant martensitic transformation resulted from nonproportional cycling for the trapezoidal path, leading to increased medium-angle grain boundaries. For proportional loading, high-angle grain boundaries were dominant, owing to participation of limited grains in the deformation process. All results were substantiated through electron microscopy.

References

  1. 1.
    D.L. McDowell: Proc. Int. Conf. on Constitutive Laws for Engineering Materials, Tucson, AZ, 1983, C.S. Desai and R.H. Gallagher, eds., 1983, p. 125.Google Scholar
  2. 2.
    K. Kanazawa, K.J. Miller, and M.W. Brown: Fatigue Eng. Mater. Struct., 1979, vol. 2, pp. 217–28.CrossRefGoogle Scholar
  3. 3.
    E. Krempl and H. Lu: ASME J. Eng. Mater. Technol., 1984, vol. 106, pp. 376–82.CrossRefGoogle Scholar
  4. 4.
    S.H. Doong, D.F. Socie, and I.M. Robertson: ASME J. Eng. Mater. Technol., 1990, vol 112, pp. 456–64.CrossRefGoogle Scholar
  5. 5.
    G.Z Kang and Q. Gao: Key Eng. Mater., 2004, vol. 247, pp. 247–52.CrossRefGoogle Scholar
  6. 6.
    E. Tanaka, S. Murakami, and M. Ooka: J. Mech. Phys. Solids, 1985, vol. 33, pp. 559–75CrossRefGoogle Scholar
  7. 7.
    N. Shamsaei, A. Fatemi, and D.F. Socie: Int. J. Plasticity, 2010, vol. 26, pp. 1680–1701.CrossRefGoogle Scholar
  8. 8.
    T. Itoh, M. Sakane, M. Ohnami, and K. Ameyama: J. Soc. Mater. Sci., Jpn., 1992, vol. 41, pp. 1361–67CrossRefGoogle Scholar
  9. 9.
    D.L. McDowell, D.R. Stahl, S.R. Stock, and S.D. Antolovich: Metall. Trans. A, 1988, vol. 19A, pp. 1277–93.CrossRefGoogle Scholar
  10. 10.
    N. Shamsaei, A. Fatemi, and D.F. Socie: Int. J. Fatigue, 2011, vol. 33, pp. 597–609.CrossRefGoogle Scholar
  11. 11.
    M. Takahiro, T. Itoh, and Z. Bao: lnt. J. Pres. Ves. Pip., 2016, vol. 139, pp. 228–36.Google Scholar
  12. 12.
    P. Arora, S.K. Gupta, V. Bhasin, R.K. Singh, S. Sivaprasad, and S. Tarafder: Int. J. Fatigue, 2016, vol. 85, pp. 98–113.CrossRefGoogle Scholar
  13. 13.
    T. Itoh, M. Sakane, M. Ohnami, and K. Ameyama: MECAMAT ‘92, Proc. Int. Seminar on Multiaxial Plasticity, 1992, pp. 43–50.Google Scholar
  14. 14.
    S. Kida, T. Itoh, M. Sakane, M. Ohnami, and D.F. Soci: Fat. Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1375–86.CrossRefGoogle Scholar
  15. 15.
    G. Cailletaud, V. Doquet, and A. Pineau: in ESIS 10, Kussmaul et al., eds., 1991, pp. 131–49.Google Scholar
  16. 16.
    S. Nishino, N. Hamada, M. Sakane, M. Ohnami, N. Matsumura, and M. Tokizane: Fat. Fract. Eng. Mater. Struct., 1986, vol. 9, pp. 65–77.CrossRefGoogle Scholar
  17. 17.
    J.A. Bannantine and D.F. Socie: in ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1988, pp. 899–921.Google Scholar
  18. 18.
    J.A. Bannantine: Master’s thesis, University of Illinois at Urbana–Champaign, Champaign, IL, 1986.Google Scholar
  19. 19.
    L. Taleb and A. Hauet: Int. J. Plasticity, 2009, vol. 25, pp. 1359–85.CrossRefGoogle Scholar
  20. 20.
    ASTM E 2207–08.03.01, Annual Book of ASTM Standards, ASTM, Conshohocken, PA, 2009, p. 1258.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Rima Dey
    • 1
  • Anindya Das
    • 1
  • Soumitro Tarafder
    • 1
  • S. Sivaprasad
    • 1
  1. 1.Material Engineering GroupNational Metallurgical Laboratory (Council of Scientific & Industrial Research)JamshedpurIndia

Personalised recommendations