Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 42–46 | Cite as

Contribution of Torque Terms to Capillary Equilibrium Along Triple Junctions in Polycrystalline Copper

  • V. V. Korolev
  • Ya. V. Kucherinenko
  • P. V. ProtsenkoEmail author
Communication
  • 113 Downloads

Abstract

In the present study, the capillary equilibrium along the triple junctions of grain boundaries (GB) was analyzed. The values of GB energy torque terms were estimated for an 18-μm-thick copper foil with {110} texture from the dihedral angles formed between the intersections of the GB planes and the sample surface and dihedral angles between the GB planes joined at a triple junction. The average value of the torque term was found to be greater than 15 pct of the GB energy.

Notes

V.A. Timoshenko is acknowledged for his contribution to interferometric studies and A.M. Makarevich for the EBSD characterization of the sample. This work was supported by the Russian Foundation for Basic Research under contract numbers18-08-01508 and 18-02-00752.

References

  1. 1.
    1 B.K. Hodgson and H. Mykura: J. Mater. Sci., 1973, 8:565–70.CrossRefGoogle Scholar
  2. 2.
    2 D. Chatain, V. Ghetta, and P. Wynblatt: Interface Sci., 2004, 12:7–18.CrossRefGoogle Scholar
  3. 3.
    3 H. Mykura: Acta Metall., 1961, 9:570–6.CrossRefGoogle Scholar
  4. 4.
    4 N. Eustathopoulos: Int. Met. Rev., 1983, 28:189–210.CrossRefGoogle Scholar
  5. 5.
    5 J. Li, S.J. Dillon, and G.S. Rohrer: Acta Mater., 2009, 57:4304–11.CrossRefGoogle Scholar
  6. 6.
    6 L.E. Murr, R.J. Hoeylev, and W.N. Lin: Philos. Mag., 1969, 20:1245–64.CrossRefGoogle Scholar
  7. 7.
    7 G.C. Hasson and C. Goux: Scr. Metall., 1971, 5: 889–94.CrossRefGoogle Scholar
  8. 8.
    8 D.M. Saylor, A. Morawiec, B.L. Adams, and G.S. Rohrer: Interface Sci., 2000, 8:131–140.CrossRefGoogle Scholar
  9. 9.
    9 P. Volovitch, V. Traskine, T. Baudin, and L. Barrallier: Interface Sci., 2002, 10:303–9.CrossRefGoogle Scholar
  10. 10.
    10 M.S. Masteller and C.L. Bauer: Scr. Metall., 1976, 10:1033–7.CrossRefGoogle Scholar
  11. 11.
    11 W.A. Miller and W.M. Williams: Acta Met., 1967, 15:1077–9.CrossRefGoogle Scholar
  12. 12.
    12 A. Morawiec: Acta Mater., 2000, 48:3525–32.CrossRefGoogle Scholar
  13. 13.
    13 D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, 51:3675–86.CrossRefGoogle Scholar
  14. 14.
    14 B. Zhao, A. Ziemons, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 2012, 60:811–8.CrossRefGoogle Scholar
  15. 15.
    15 B. Zhao, J.C. Verhasselt, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 2010, 58:5646–53.CrossRefGoogle Scholar
  16. 16.
    V.V. Korolev, Y.V. Kucherinenko, A.M. Makarevich, B.B. Straumal, and P.V. Protsenko: Mater. Lett., 2017, 196:377–380.CrossRefGoogle Scholar
  17. 17.
    17 N. Eustathopoulos, M.G. Nicholas, and B.B. Drevet: Wettability at High Temperatures, vol. 3, Elsevier, New York, 1999.Google Scholar
  18. 18.
    18 J. Han, V. Vitek, and D.J. Srolovitz: Acta Mater., 2016, 104:259–73.CrossRefGoogle Scholar
  19. 19.
    19 J. Hickman and Y. Mishin: Phys. Rev. Mater., 2017, 1:10601.CrossRefGoogle Scholar
  20. 20.
    20 T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin: Nat. Commun., 2013, 4:1897–9.CrossRefGoogle Scholar
  21. 21.
    21 S.J. Fensin, M. Asta, and R.G. Hoagland: Philos. Mag., 2012, 92:4320–33.CrossRefGoogle Scholar
  22. 22.
    22 R.G. Hoagland and R.J. Kurtz: Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 2002, 82:1073–92Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • V. V. Korolev
    • 1
  • Ya. V. Kucherinenko
    • 2
  • P. V. Protsenko
    • 1
    Email author
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of GeologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations