Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 601–608 | Cite as

Sample Size and Strain-Rate-Sensitivity Effects on the Homogeneity of High-Pressure Torsion Deformed Disks

  • A. HohenwarterEmail author
  • R. Pippan
Article
  • 72 Downloads

Abstract

High-pressure torsion (HPT) has advanced to one of the leading severe plastic deformation (SPD) techniques over the last several years due to some unsurpassable advantages in comparison with other SPD techniques. In order to overcome the drawback of the generally small sample dimensions, novel HPT setups have been designed recently. The mechanical and microstructural results, however, may also be affected by the sample size used. To investigate the transferability of the results between different sample dimensions, a comparative study on copper was performed. The hardness distribution of different sample sizes ranging between 8 and 60 mm in diameter with a thickness of 0.6 and 12 mm was measured and accompanied with microstructural investigations. It will be shown that the results obtained from different disks are sample-size independent when some simple guidelines are obeyed. The influence of the significant factors, such as sample aspect ratio, deformation speed, and strain rate sensitivity, on the resulting mechanical and microstructural properties are discussed.

Notes

Acknowledgments

Funding of this work was provided by the European Research Council under ERC Grant Agreement No. 340185 USMS. The authors also thank A. Leitner and V. Maier-Kiener for the indispensable support with the nanoindentation experiments.

References

  1. 1.
    P.W. Bridgman: Phys. Rev., 1935, vol. 48, p. 825-47.CrossRefGoogle Scholar
  2. 2.
    A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, p. 893-979.CrossRefGoogle Scholar
  3. 3.
    K. Edalati and Z. Horita: Mater. Sci. Eng. A, 2016, vol. 652, p. 325-52.CrossRefGoogle Scholar
  4. 4.
    R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Ann. Rev. Mater. Res., 2010, vol. 40, pp. 319–43.CrossRefGoogle Scholar
  5. 5.
    K. Edalati and Z. Horita: Acta Mater., 2011, vol. 59, p. 6831-36.CrossRefGoogle Scholar
  6. 6.
    K. Edalati, S. Toh, Y. Ikoma, and Z. Horita: Scripta Mater., 2011, vol. 65, p. 974-77.CrossRefGoogle Scholar
  7. 7.
    M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita, M. Kai, and Z. Horita: J. Phys. Chem. Solids, 2009, vol. 70, p. 1089-92.CrossRefGoogle Scholar
  8. 8.
    A. Bachmaier, A. Hohenwarter, and R. Pippan: Scripta Mater., 2009, vol. 61, p. 1016-19.CrossRefGoogle Scholar
  9. 9.
    I. Sabirov and R. Pippan: Scripta Mater., 2005, vol. 52, p. 1293-98.CrossRefGoogle Scholar
  10. 10.
    A. Bachmaier, M. Pfaff, M. Stolpe, H. Aboulfadl, and C. Motz: Acta Mater., 2015, vol. 96, p. 269-83.CrossRefGoogle Scholar
  11. 11.
    B. Oberdorfer, D. Setman, E.M. Steyskal, A. Hohenwarter, W. Sprengel, M. Zehetbauer, R. Pippan, and R. Würschum: Acta Mater., 2014, vol. 68, p. 189-95.CrossRefGoogle Scholar
  12. 12.
    O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Acta Mater., 2014, vol. 77, p. 401-10.CrossRefGoogle Scholar
  13. 13.
    R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova: Adv. Eng. Mater., 2008, vol. 10, p. B15-B17, 702.CrossRefGoogle Scholar
  14. 14.
    K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S. Orimo, E. Akiba, and Z. Horita: Scripta Mater., 2016, vol. 124, p. 108-11.CrossRefGoogle Scholar
  15. 15.
    G. Sakai, K. Nakamura, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 406, p. 268-73.CrossRefGoogle Scholar
  16. 16.
    Y. Harai, Y. Ito, and Z. Horita: Scripta Mater., 2008, vol. 58, p. 469-72.CrossRefGoogle Scholar
  17. 17.
    L.S. Tóth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion: Scripta Mater., 2009, vol. 60, p. 175-77.CrossRefGoogle Scholar
  18. 18.
    Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn: Mater. Sci. Eng. A, 2016, vol. 664, p. 247-56.CrossRefGoogle Scholar
  19. 19.
    A. Hohenwarter: Mater. Sci. Eng. A, 2015, vol. 626, p. 80-85.CrossRefGoogle Scholar
  20. 20.
    R. Pippan, S. Scheriau, A. Hohenwarter, and M. Hafok: Mater. Sci. Forum, 2008, vols. 584–586, p. 16-21.CrossRefGoogle Scholar
  21. 21.
    A. Hohenwarter, A. Bachmaier, B. Gludovatz, S. Scheriau, and R. Pippan: Int. J. Mater. Res., 2009, vol. 100, p. 1653-61.CrossRefGoogle Scholar
  22. 22.
    A. Hohenwarter, M. Rockenschaub, and R. Pippan: in Promoting Advanced Materials by SPD and Phase Transformation, Z. Horita and K. Edalati, eds., Kyushu University, 2017, pp. 74–75.Google Scholar
  23. 23.
    K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama, and R. Pippan: Mater. Sci. Eng. A, 2011, vol. 528, p. 7301-305.CrossRefGoogle Scholar
  24. 24.
    P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon: Mater. Sci. Eng. A, 2014, vol. 593, p. 185-88.CrossRefGoogle Scholar
  25. 25.
    R.B. Figueiredo, P. H. R. Pereira, M. T. P. Aguilar, P.R. Cetlin, and T.G. Langdon: Acta Mater., 2012, vol. 60, p. 3190-98.CrossRefGoogle Scholar
  26. 26.
    R.B. Figueiredo and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 528, p. 4500-506.CrossRefGoogle Scholar
  27. 27.
    D.J. Lee, E.Y. Yoon, L.J. Park, and H.S. Kim: Scripta Mater., 2012, vol. 67, p. 384-87.CrossRefGoogle Scholar
  28. 28.
    F. Wetscher, A. Vorhauer, and R. Pippan: Mater. Sci. Eng. A, 2005, vols. 410–411, p. 213-16.CrossRefGoogle Scholar
  29. 29.
    H.W. Höppel, J. May, P. Eisenlohr, and M. Göken: Z. Met., 2005, vol. 96, p. 566-71.CrossRefGoogle Scholar
  30. 30.
    K.S. Kormout, R. Pippan, and A. Bachmaier: Adv. Eng. Mater., 2017, vol. 19, art. no. 1600675.Google Scholar
  31. 31.
    V. Maier-Kiener, X. An, L. Li, Z. Zhang, R. Pippan, and K. Durst: J. Mater. Res., 2017, vol. 32, p. 4583-91.CrossRefGoogle Scholar
  32. 32.
    H. Jiang, Y.T. Zhu, D.P. Butt, I.V Alexandrov, and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 290, p. 128-38.CrossRefGoogle Scholar
  33. 33.
    A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 641, p. 21-28.CrossRefGoogle Scholar
  34. 34.
    X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Scripta Mater., 2010, vol. 63, p. 560-63.CrossRefGoogle Scholar
  35. 35.
    K. Edalati, T. Fujioka, and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 497, p. 168-73.CrossRefGoogle Scholar
  36. 36.
    A. Hohenwarter and R. Pippan: Mater. Sci. Eng. A, 2012, vol. 540, p. 89-96.CrossRefGoogle Scholar
  37. 37.
    G.B. Rathmayr and R. Pippan: Acta Mater., 2011, vol. 59, p. 7228-40.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials PhysicsMontanuniversität LeobenLeobenAustria
  2. 2.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria

Personalised recommendations