Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 35–41 | Cite as

Pearlite Transformation in a Deformed TRIP/TWIP Austenitic Steel

  • D. De Castro
  • J. Vivas
  • R. Rementeria
  • M. M. Aranda
  • J. A. Jimenez
  • C. CapdevilaEmail author


The increasing population of defects in strained austenite not only increases the heterogeneous nucleation site density for pearlite transformation, but also increases the austenite free energy due to the strain. This fact leads to a reduction in the critical free energy for pearlite nucleation, which triggers pearlite formation compared with austenite transformation without straining. Besides, a significant refinement of the pearlite colony size due to hard impingement between neighboring colonies is achieved.


The authors acknowledge the financial supportby the Spanish Ministerio de Economia y Competitividad (MINECO) through the form of a Coordinate Project (MAT2016-80875-C3-1-R). The authors also acknowledge the financial support by the Comunidad de Madrid through DIMMAT-CM_S2013/MIT-2775 project.


  1. 1.
    J. Cahn, W. Hagel. Theory of the pearlite reaction. In: Z. Zackey, H. Aaronson, editors. Decomposition of Austenite by Diffusional Processes. New York: Interscience, 1962. p.131-192.Google Scholar
  2. 2.
    M. Hillert: The formation of pearlite. New York: Interscience, 1962, pp. 197-237.Google Scholar
  3. 3.
    N. Ridley: in: Phase Transformations in Ferrous Alloys (TMS-AIME, Warrendale, PA), M.A. R., G. J.I, eds., Metallurgical Society of AIME, 1984, pp. 201–36.Google Scholar
  4. 4.
    F.C. Hull, R.F. Mehl: Trans. ASM, 1942, vol. 30, pp. 381-421.Google Scholar
  5. 5.
    H.I. Aaronson, V.F. Zackay: Decomposition of austenite by diffusional processes. Interscience Publ., New York, 1962Google Scholar
  6. 6.
    P.J. Clemm, J.C. Fisher: Acta Metall., 1955, vol. 3, pp. 70-73.CrossRefGoogle Scholar
  7. 7.
    T. Furuhara, N. Kimura, T. Maki: Steel Res. Int., 2012, vol. 83, pp. 358-362.CrossRefGoogle Scholar
  8. 8.
    M. Umemoto, H. Ohtsuka, I. Tamura: Trans. Iron Steel Inst. Japan, 1983, vol. 23, pp. 775-784.CrossRefGoogle Scholar
  9. 9.
    J. Moon, S. J-. Park, J. H. Jang, T. H-. Lee, C. H-. Lee, H. U-. Hong, H. N. Han, J. Lee, B. H. Lee, C. Lee: Acta Mater., 2018, vol. 147, pp. 226-235.CrossRefGoogle Scholar
  10. 10.
    J. Zhang, D. Raabe, C. C. Tasan: Acta Mater., 2017, vol. 141, pp. 374-387.CrossRefGoogle Scholar
  11. 11.
    11.S. Chen, R. Rana, A. Haldar, R. K. Ray: Prog. Mater. Sci., vol. 89, 2017, 345-391.CrossRefGoogle Scholar
  12. 12.
    M. Maalekian, M.L. Lendinez, E. Kozeschnik, H.P. Brantner, H. Cerjak: Mater. Sci. Eng. A, 2007, vol. 454-455, pp. 446-452.CrossRefGoogle Scholar
  13. 13.
    M. Hillert. In: V.F. Zackay, H.I. Aaronson, editors. Decomposition of austenite by diffusional processes. New York: Interscience, 1962. p.197-237.Google Scholar
  14. 14.
    14.E.E. Underwood, J.C. Grebetz, R.A. Koos. Practical Metallography, vol. 19, 1982, pp. 347-355.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • D. De Castro
    • 1
  • J. Vivas
    • 1
  • R. Rementeria
    • 1
    • 2
  • M. M. Aranda
    • 1
  • J. A. Jimenez
    • 1
  • C. Capdevila
    • 1
    Email author
  1. 1.Centro Nacional de Investigaciones Metalúrgicas (CENIM)Consejo Superior Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Additive Manufacturing - New FrontierArcelorMittal Global R&DAvilésSpain

Personalised recommendations