Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 72–96 | Cite as

Phase Transformations and Microstructural Development in the U-10 Wt Pct Mo Alloy with Varying Zr Contents After Heat Treatments Relevant to the Monolithic Fuel Plate Fabrication Process

  • Abhishek Mehta
  • Nicholas Eriksson
  • Ryan Newell
  • Le Zhou
  • Esin Schulz
  • William Sprowes
  • Felipe Betancor
  • Youngjoo Park
  • Dennis D. KeiserJr.
  • Yongho SohnEmail author
Article
  • 61 Downloads

Abstract

Decomposition of metastable, isotropic, body-centered cubic γ-phase in the U-10 wt pct Mo alloys with varying Zr contents was investigated as function of heat treatment parameters (i.e., temperature and time) relevant to the fabrication of monolithic fuel plate in development for research and test reactors. Phase constituents and microstructural characterization was performed using X-ray diffraction via Rietveld refinement, scanning electron microscopy with quantitative image analysis, and analytical transmission electron microscopy. Results were compared with the amount of equilibrium phases calculated using the lever rule from the available ternary phase diagrams. After sequential three-step heat treatment (900 °C for 168 hours, 650 °C for 3 hours, and 560 °C for 1.5 hours) decomposition of γ-phase was observed in alloys containing 2 wt pct or higher Zr. Decomposition of γ-phase occurred by the depletion of Mo in γ-phase due to the formation of Mo2Zr. Formation of Mo2Zr at 900 °C and 650 °C produced γ-phase with low-Mo content which in turn promoted a faster onset of eutectoid decomposition at 560 °C. The U-10Mo-4Zr and U-10Mo-10Zr alloys had the highest amount of Mo2Zr, and exhibited the largest amount of γ-phase decomposition after the heat treatment at 560 °C. Cooling rate from the heat treatment at 560 °C did not influence the phase constituents of the U-10Mo-xZr alloys, but the slower cooling promoted the better-defined lamellae microstructure associated with eutectoid decomposition. Trace amount of δ-phase was also observed in the microstructure after the heat treatment at 560 °C, presumably due to local inhomogeneity in alloy compositions.

Notes

Acknowledgment

This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

References

  1. 1.
    D.D. Keiser, S.L. Hayes, M.K. Meyer, C.R. Clark, JOM, 2003, vol. 55, pp. 55-58.CrossRefGoogle Scholar
  2. 2.
    J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Nuclear Engineering and Design, 1997, vol. 178, pp. 119-126.CrossRefGoogle Scholar
  3. 3.
    A.L. S. van den Berghe, E. Koonen, L. Sannen, Advances in Science and Technology, 2010, vol. 73, pp. 78-90.CrossRefGoogle Scholar
  4. 4.
    E. Wilson, A. Bergeron, J. Stillman, T. Heltemes, D. Jaluvka, L. Jamison, European Nuclear Society: European Research Reactor Conference, Rotterdam, Netherlands, 14-18 May 2017, RRFM 2017-A0110.Google Scholar
  5. 5.
    R. Newell, A. Mehta, Y.J. Park, D.D. Keiser Jr, Y.H. Sohn, Defect and Diffusion Forum, 2018, vol. 383, pp. 10-16.CrossRefGoogle Scholar
  6. 6.
    R. Newell, A. Mehta, Y.J. Park, Y.H. Sohn, J.F. Jue, D.D. Keiser Jr, Defect and Diffusion Forum, 2017, vol. 375, pp. 18-28.CrossRefGoogle Scholar
  7. 7.
    R.M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, W. Schmid, J. Schneider, N. Wieschalla, Journal of Nuclear Materials, 2010, vol. 402, pp. 74-80.CrossRefGoogle Scholar
  8. 8.
    A. Mehta, L. Zhou, E.A. Schulz, D.D. Keiser, J.I. Cole, Y. Sohn, Journal of Phase Equilibria and Diffusion, 2018, vol. 39, pp. 246-254.CrossRefGoogle Scholar
  9. 9.
    J.-F. Jue, B.H. Park, C.R. Clark, G.A. Moore, D.D. Keiser Jr, Nuclear technology, 2010, vol. 172, pp. 204-210.CrossRefGoogle Scholar
  10. 10.
    G.A. Moore, M.C. Marshall, Idaho National Laboratory, 2010, INL/EXT-10-17774, pp 1-17.Google Scholar
  11. 11.
    R. Newell, Y. Park, A. Mehta, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2017, vol. 487, pp. 443-452.CrossRefGoogle Scholar
  12. 12.
    J.-F. Jue, T.L. Trowbridge, C.R. Breckenridge, G.A. Moore, M.K. Meyer, D.D. Keiser, Journal of Nuclear Materials, 2015, vol. 460, pp. 153-159.CrossRefGoogle Scholar
  13. 13.
    Y. Park, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2015, vol. 456, pp. 351-358.CrossRefGoogle Scholar
  14. 14.
    E. Perez, B. Yao, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2010, vol. 402, pp. 8-14.CrossRefGoogle Scholar
  15. 15.
    J.-F. Jue, D.D. Keiser, C.R. Breckenridge, G.A. Moore, M.K. Meyer, Journal of Nuclear Materials, 2014, vol. 448, pp. 250-258.CrossRefGoogle Scholar
  16. 16.
    Y. Park, J. Yoo, K. Huang, D. Keiser, J. Jue, B. Rabin, G. Moore, Y. Sohn, Journal of Nuclear Materials, 2014, vol. 447, pp. 215-224.CrossRefGoogle Scholar
  17. 17.
    Y. Park, N. Eriksson, D. Keiser, J. Jue, B. Rabin, G. Moore, Y. Sohn, Materials Characterization, 2015, vol. 103, pp. 50-57.CrossRefGoogle Scholar
  18. 18.
    S. Neogy, M. Saify, S. Jha, D. Srivastava, M. Hussain, G. Dey, R. Singh, Journal of Nuclear Materials, 2012, vol. 422, pp. 77-85.CrossRefGoogle Scholar
  19. 19.
    Y. Park, N. Eriksson, R. Newell, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2016, vol. 480, pp. 271-280.CrossRefGoogle Scholar
  20. 20.
    H. Okamoto, Journal of Phase Equilibria and Diffusion, 2012, vol. 33, p. 497.CrossRefGoogle Scholar
  21. 21.
    P. Repas, R. Goodenow, R. Hehemann, Trans. Am. Soc. Metals, 1964, vol. 57, pp. 150-163.Google Scholar
  22. 22.
    P. Repas, R. Goodenow, R. Hehemann, U.S. Army Materials Research Agency, Watertown, MA, USA, 1963, AMRA-CR-63-02/1(F).Google Scholar
  23. 23.
    C.A.W. Peterson, W.J. Steele, S.L. DiGiallonardo, University of California – Ernest O. Lawrence Radiation Laboratory, Livermore, CA, USA (Available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, VA, USA), 1964, UCRL-7824, pp. 1–27.Google Scholar
  24. 24.
    M. Meyer, G. Moore, J. Jue, D. Keiser, I. Glagolenko, D. Wachs, P. Murray, A. Robinson, F. Rice, H. Ozaltun, S. Miller, M. Okuniewski, B. Rabin, H. Glunz, N. Lybeck, Idaho National Laboratory, 2012 INL/EXT-12-26500, pp. 1–179.Google Scholar
  25. 25.
    K.H. Kim, H.J. Kwon, J.M. Park, Y.S. Lee, C.K. Kim, Journal of the Korean Nuclear Society, 2001, vol. 33, pp. 365-374.Google Scholar
  26. 26.
    M. Meyer, J. Gan, J. Jue, D. Keiser, E. Perez, A. Robinson, D. Wachs, N. Woolstenhulme, G. Hofman, Y. Kim, Nuclear Engineering and Technology, 2014, vol. 46, pp. 169-182.CrossRefGoogle Scholar
  27. 27.
    R. Willard, A. Schmitt, Atomics International, California, 1964, NAA-SR-8956, pp. 1-33.Google Scholar
  28. 28.
    A. Shoudy, W. McHugh, M. Silliman, Radiation Damage in Reactor Materials, 1963, vol. 46 pp. 133-162.Google Scholar
  29. 29.
    H.M. Rietveld, Journal of applied Crystallography, 1969, vol. 2, pp. 65-71.CrossRefGoogle Scholar
  30. 30.
    L. McCusker, R. Von Dreele, D. Cox, D. Louër, P. Scardi, Journal of Applied Crystallography, 1999, vol. 32, pp. 36-50.CrossRefGoogle Scholar
  31. 31.
    C. Suryanarayana, M.G. Norton, X-ray diffraction: a practical approach, Springer Science & Business Media, New York, 1998.CrossRefGoogle Scholar
  32. 32.
    O. Ivanov, G. Bagrov, Struct. Alloys Certain Syst. Cont. Uranium Thorium, 1963, pp. 131–53; (Republished by ASM Alloy Phase Diagram Center, ASM International, 2007).Google Scholar
  33. 33.
    O. Ivanov, G. Bagrov, Struct. Alloys Certain Syst. Cont. Uranium Thorium, 1963, pp. 154–76, (Republished by ASM Alloy Phase Diagram Center, ASM International, 2007).Google Scholar
  34. 34.
    R.J. Perez, B. Sundman, Calphad, 2003, vol. 27, pp. 253-262.CrossRefGoogle Scholar
  35. 35.
    A. PazyPuente, J. Dickson, D. Keiser, Y. Sohn, Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 317–21.CrossRefGoogle Scholar
  36. 36.
    C. Basak, R. Keswani, G. Prasad, H. Kamath, N. Prabhu, S. Banerjee, Journal of Nuclear Materials, 2009, vol. 393, pp. 146-152.CrossRefGoogle Scholar
  37. 37.
    F. Rough, A. Bauer, Battelle Memorial Inst., 1958, BMI-1300, p. 41.Google Scholar
  38. 38.
    R.I. Sheldon, D.E. Peterson, Bulletin of Alloy Phase Diagrams, 1989, vol. 10, pp. 165-171.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Abhishek Mehta
    • 1
  • Nicholas Eriksson
    • 1
  • Ryan Newell
    • 1
  • Le Zhou
    • 1
  • Esin Schulz
    • 1
  • William Sprowes
    • 1
  • Felipe Betancor
    • 1
  • Youngjoo Park
    • 1
  • Dennis D. KeiserJr.
    • 2
  • Yongho Sohn
    • 1
    Email author
  1. 1.Advanced Materials Processing and Analysis Center, Department of Materials Science and EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations