Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 348–356 | Cite as

Catalytic Preparation of Si3N4-Bonded SiC Refractories and Their High-Temperature Properties

  • Feng LiangEmail author
  • Wanguo Zhao
  • Lilin Lu
  • Haijun ZhangEmail author
  • Yubao Bi
  • Jun Zhang
  • Jianghao Liu
  • Shaowei Zhang
Article
  • 93 Downloads

Abstract

Effects of Cr2O3 nanoparticles (NPs) on the catalytic nitridation of Si powders were investigated, and the results showed that the Cr2O3 NP catalysts enhanced the nitridation of Si powders and promoted the formation of Si3N4 whiskers. The complete conversion of Si was achieved at [1473 K (1200 °C)] for 3 hours with the addition of 3 wt pct Cr2O3 NPs. First-principle calculations suggested that the electron transfer from Cr2O3 to N2 molecules facilitates the Si nitridation. Moreover, Si3N4-bonded SiC refractories were also prepared using in-situ formed Cr2O3 NPs as catalysts, and the hot modulus of rupture at [1673 K (1400 °C)] of as-prepared refractories was about three times higher than that of samples without catalysts; the corrosion resistance against molten cryolite of the former was remarkably lower than that of the latter. The improvement was attributed to the catalytic effects of Cr2O3 NPs for in-situ formation of a fund of Si3N4 whiskers, which formed a network structure in the samples.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51472185, 51502216, and 51672194), the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (Grant No. T201602), and the Key Program of the Natural Science Foundation of Hubei Province (Grant No. 2017CFA004).

References

  1. 1.
    E. Wang: J. Am. Ceram. Soc., 2012, vol. 95, pp. 730–38.CrossRefGoogle Scholar
  2. 2.
    Y. Jiang, M. Chen, L. Feng, J. Chen, and B. Zhao: Ceram. Int., 2018, vol. 44, pp. 718–22.CrossRefGoogle Scholar
  3. 3.
    H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, and S. Li: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 3781–87.CrossRefGoogle Scholar
  4. 4.
    G.P. Jiang and J.F. Yang: J. Am. Ceram. Soc., 2018, vol. 101, pp. 520–24.CrossRefGoogle Scholar
  5. 5.
    H. Klemm: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1501–22.CrossRefGoogle Scholar
  6. 6.
    H. Hyuga, K. Yoshida, N. Kondo, H. Kita, J. Sugai, H. Okano, and J. Tsuchida: Ceram. Int., 2009, vol. 35, pp. 1927–32.CrossRefGoogle Scholar
  7. 7.
    J.F. Chen, N. Li, Y.W. Wei, B.Q. Han, and W. Yan: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 1821–29.CrossRefGoogle Scholar
  8. 8.
    J.T. Huang, Z.H. Huang, S.W. Zhang, M.H. Fang, and Y.G. Liu: J. Nanomater., 2014, vol. 2014, pp. 1–6.Google Scholar
  9. 9.
    L. Han, L. Huang, F. Li, J. Wang, Y. Pei, Y. Zeng, Q. Jia, H. Zhang, and S. Zhang: Ceram. Int., 2018, vol. 44, pp. 11088–11093.CrossRefGoogle Scholar
  10. 10.
    J. Liu, Y. Gu, F. Li, L. Lu, H. Zhang, and S. Zhang: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 4467–74.CrossRefGoogle Scholar
  11. 11.
    W. Zhao, H. Zhang, J. Liu, X. Deng, Y. Bi, and S. Zhang: J. Ceram. Soc. Jpn., 2017, vol. 125, pp. 623–27.CrossRefGoogle Scholar
  12. 12.
    M. Long, Y. Li, X. Jin, G. Yao, J. Sun, and R.V. Kumar: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4350–56.CrossRefGoogle Scholar
  13. 13.
    H.N. Kim, J.W. Ko, J.M. Kim, Y.J. Park, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, and I.S. Seo: Ceram. Int., 2016, vol. 42, pp. 7072–79.CrossRefGoogle Scholar
  14. 14.
    S. Goel, A. Kumar, J.K. Quamara, and J. Kumar: Adv. Sci. Lett., 2014, vol. 20, pp. 1562–66.CrossRefGoogle Scholar
  15. 15.
    R.F.K. Gunnewiek, C.F. Mendes, and R.H.G.A. Kiminami: Mater. Lett., 2014, vol. 129, pp. 54–56.CrossRefGoogle Scholar
  16. 16.
    S.U. Rehman, F.K. Butt, B.U. Haq, S. AlFaify, W.S. Khan, and C. Li: Sol. Energy, 2018, vol. 169, pp. 648–57.CrossRefGoogle Scholar
  17. 17.
    S. Marutheeswaran and E.D. Jemmis: J. Phys. Chem. C, 2018, vol. 122, pp. 7945–50.CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, W. Sun, W. Chu, J. Zheng, X. Gao, X. Zhou, and Y. Xue: Appl. Surf. Sci., 2018, vol. 435, pp. 521–28.CrossRefGoogle Scholar
  19. 19.
    H. Badem, A. Basturk, A. Caliskan, and M.E. Yuksel: Neurocomputing, 2017, vol. 266, pp. 506–26.CrossRefGoogle Scholar
  20. 20.
    Y. Gu, L. Lu, H. Zhang, Y. Cao, F. Li, and S. Zhang: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1762–68.CrossRefGoogle Scholar
  21. 21.
    F. Liang, L. Lu, L. Tian, F. Li, H. Zhang, and S. Zhang: Sci. Rep., 2016, vol. 6, p. 31559-68.CrossRefGoogle Scholar
  22. 22.
    Y.W. Kim, Y.S. Chun, T. Nishimura, M. Mitomo, and Y.H. Lee: Acta. Mater., 2007, vol. 55, pp. 727–36.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Feng Liang
    • 1
    Email author
  • Wanguo Zhao
    • 1
  • Lilin Lu
    • 1
  • Haijun Zhang
    • 1
    Email author
  • Yubao Bi
    • 1
  • Jun Zhang
    • 1
  • Jianghao Liu
    • 1
  • Shaowei Zhang
    • 2
  1. 1.State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations