Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 480–492 | Cite as

Influences of Mono-Ni(P) and Dual-Cu/Ni(P) Plating on the Interfacial Microstructure Evolution of Solder Joints

  • Zhe Zhang
  • Xiaowu HuEmail author
  • Xiongxin Jiang
  • Yulong LiEmail author
Article
  • 101 Downloads

Abstract

The interfacial microstructures of Sn-3.0Ag-0.5Cu (SAC305) solder systems with thin Ni(P) mono-coatings and Cu-Ni(P) dual-coatings were investigated after reflowing and isothermal aging. The ultrathin mono-Ni(P) plating of the SAC305/Ni(P) solder joint was found to rapidly decompose and then transform into a Ni2SnP phase. An intermetallic compound (IMC) formed at the plating/substrate interface, indicating that the ultrathin mono-Ni(P) plating was not an effective diffusion barrier. However, only a single IMC layer ((Cu,Ni)6Sn5) formed at the solder/plating interface in the SAC305/Cu/Ni(P)/Cu system. The (Cu,Ni)6Sn5 IMC effectively suppressed atomic diffusion, protecting the Ni(P) plating and Cu substrate. Although P-Sn-O pores formed in the root of the (Cu,Ni)6Sn5 IMC layer, the dual-Cu/Ni(P) plating protected the solder system for an extended period. The IMC growth rate constants of the SAC305/Cu, SAC305/Ni(P), and SAC305/Cu/Ni(P)/Cu solder joint systems were 0.180, 0.342, and 0.068 μm/h1/2, respectively. These results indicate that the application of dual-Cu/Ni(P) plating can effectively hinder the growth of IMC.

Notes

Acknowledgments

This study was supported by the Nature Science Foundation of China (No. 51465039, 51765040), and the Nature Science Foundation of Jiangxi Province (20161BAB206122).

References

  1. 1.
    J.W. Nah, J.H. Kim, H.M. Lee and K.W. Paik: Acta Mater., 2004, vol. 52, pp. 129-36.CrossRefGoogle Scholar
  2. 2.
    Y. Ding, C.Q. Wang, Y.H. Tian, and B.B. Zhang: Metall. Mater. Trans. A., 2006, vol. 37, pp.1017-25.CrossRefGoogle Scholar
  3. 3.
    V. Kumar, Z. Z. Fang, J. Liang and N. Dariavach: Metall. Mater. Trans. A., 2006, vol. 37, pp. 2505-14CrossRefGoogle Scholar
  4. 4.
    X. Gu, K.C. Yung, Y.C. Chan and D. Yang: J. Mater. Sci. - Mater. Electron., 2011, vol. 22, pp. 217-22Google Scholar
  5. 5.
    DG Kim, JW Kim, SB Jung (2005) Mater. Sci. Eng. B 121:204-10.CrossRefGoogle Scholar
  6. 6.
    S.R.A. Idris: Ph.D. Dissertation, University Teknologi Malaysia, 2008.Google Scholar
  7. 7.
    P. Sungkhaphaitoon and T. Plookphol: Metall. Mater. Trans. A, 2018, vol. 49, pp. 652-60.CrossRefGoogle Scholar
  8. 8.
    A Sharif, MN Islam, YC Chan (2004) Mater. Sci. Eng. B 113:184-89.CrossRefGoogle Scholar
  9. 9.
    HT Lee, MH Chen, HM Jao, TL Liao (2003) Mater. Sci. Eng. A 358:134-41.CrossRefGoogle Scholar
  10. 10.
    L. Meinshausen: Ph.D. Dissertation, Electronics. University de Bordeaux, 2014.Google Scholar
  11. 11.
    J. Yu and K. Kim: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3173-81.CrossRefGoogle Scholar
  12. 12.
    S. Eraslan and M. Ürgen: Surf. Coat. Technol., 2015, vol. 265, pp. 46-52.CrossRefGoogle Scholar
  13. 13.
    Katarzyna N., Braszczyńska-Malik and Jacek Kamieniak: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5649-57.CrossRefGoogle Scholar
  14. 14.
    T.R. Tamilarasan, R. Rajendran, G. Rajagopal and J. Sudagar: Surf. Coat. Technol., 2015, vol. 276, pp. 320-6.CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin and J.G. Duh: Scripta Mater., 2006, vol. 54, pp. 1661-5.CrossRefGoogle Scholar
  16. 16.
    Y.C. Lin, T.Y. Shih, S.K. Tien and J.G. Duh: Scripta Mater., 2007, vol. 56, pp. 49-52.CrossRefGoogle Scholar
  17. 17.
    Y.C. Lin, K.J. Wang and J.G. Duh: J. Electron. Mater., 2010, vol. 39, pp. 283-94.CrossRefGoogle Scholar
  18. 18.
    S.P. Peng, W.H. Wu, C.E. Ho and Y.M. Huang: J. Alloys Compd., 2010, vol. 493, pp. 431-7.CrossRefGoogle Scholar
  19. 19.
    W.H. Wu, C.S. Lin, S.H. Huang and C.E. Ho: J. Electron. Mater., 2010, vol. 39, pp. 2387-96.CrossRefGoogle Scholar
  20. 20.
    C.E. Ho, C.W. Fan and W.Z. Hsieh: Surf. Coat. Technol., 2014, vol. 259, pp. 244-51.CrossRefGoogle Scholar
  21. 21.
    C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin and Y.H. Wu: J. Mater. Sci., 2013, vol. 48, pp. 2724-32.CrossRefGoogle Scholar
  22. 22.
    C.Y. Liu and S.J. Wang: J. Electron. Mater., 2003, vol. 32, pp. 1303-9.CrossRefGoogle Scholar
  23. 23.
    S.J. Wang and C.Y. Liu: Scripta Mater., 2003, vol. 49, pp. 813-8.CrossRefGoogle Scholar
  24. 24.
    B Lee, H Jeon, KW Kwon, HJ Lee (2013) Acta Mater. 61: 6736-42.CrossRefGoogle Scholar
  25. 25.
    J. Liang, N. Dariavach, P. Callahan and D. Shangguan: Mater. Trans., 2006, vol. 47, pp. 317-25.CrossRefGoogle Scholar
  26. 26.
    P. Chen, X. Zhao, Y. Wang, Y. Liu, H. Li and Y. Gu: J. Mater. Sci. - Mater. Electron., 2015, vol. 26, pp. 1940-9.Google Scholar
  27. 27.
    X. Hu, T. Xu, L.M. Keer, Y. Li and X. Jiang: J. Alloys Compd., 2017, vol. 690, pp. 720-9.CrossRefGoogle Scholar
  28. 28.
    M. Haerifar and M. Zandrahimi: Appl. Surf. Sci., 2013, vol. 284, pp. 126-32.CrossRefGoogle Scholar
  29. 29.
    CW Liu, YL Wang, MS Tsai, HP Feng, SC Chang (2005) J. Vac. Sci. Technol. A 23:658-62.CrossRefGoogle Scholar
  30. 30.
    Quéré D: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 71-99.CrossRefGoogle Scholar
  31. 31.
    W. Liu and D.P. Sekulic: Langmuir, 2011, vol. 27, pp. 6720-30.CrossRefGoogle Scholar
  32. 32.
    J.W. Yoon and S.B. Jung: J. Mater. Sci., 2004, vol. 39, pp. 4211-7.CrossRefGoogle Scholar
  33. 33.
    P.T. Vianco, J.A. Rejent and P.F. Hlava: J. Electron. Mater., 2004, vol. 33, pp. 991-1004.CrossRefGoogle Scholar
  34. 34.
    J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang: J. Electron. Mater., 2001, vol. 30, pp. 1165-70.CrossRefGoogle Scholar
  35. 35.
    C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong and T.H. Wang: J. Mater.Sci., 2013, vol. 48, pp. 2724-32.CrossRefGoogle Scholar
  36. 36.
    Y.C Lin, K.J. Wang and J.G. Duh: J .Electron. Mater., 2010, vol. 39, pp. 283-94.CrossRefGoogle Scholar
  37. 37.
    C.Y. Ho, J.G. Duh: Mater. Chem. Phys., 2014, vol. 148, pp. 21-7.CrossRefGoogle Scholar
  38. 38.
    V. Vuorinen, T. Laurila, H. Yu and J.K. Kivilahti: J. Appl. Phys., 2006, vol. 99, pp. 3530-36.CrossRefGoogle Scholar
  39. 39.
    Z. Chen, A. Kumar and M. Mona: J. Electron. Mater., 2006, vol. 35, pp. 2126-34.CrossRefGoogle Scholar
  40. 40.
    C.E. Ho, C.W. Fan, W.H. Wu and T.T. Kuo: Thin Solid Films, 2013, vol. 529, pp. 364-8.CrossRefGoogle Scholar
  41. 41.
    W.M. Chen, S.C. Yang, M.H. Tsai and C.R. Kao: Scripta Mater., 2010, vol. 63, pp. 47-9.CrossRefGoogle Scholar
  42. 42.
    K.N. Tu and K. Zeng: Mater. Sci. Eng. R, 2001, vol. 34, pp. 1-58..CrossRefGoogle Scholar
  43. 43.
    W. Peng, E. Monlevade and M.E. Marques: Microelectron. Reliab., 2007, vol. 47, pp. 2161-8.CrossRefGoogle Scholar
  44. 44.
    J. Shen, M. Zhao, P. He and Y. Pu: J. Alloys Compd., 2013, vol. 574, pp. 451-8.CrossRefGoogle Scholar
  45. 45.
    D.G. Kim and S.B. Jung: J. Alloys Compd., 2005, vol. 386, pp. 151-6.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Key Lab for Robot & Welding Automation of Jiangxi Province, Mechanical & Electrical Engineering SchoolNanchang UniversityNanchangChina

Personalised recommendations