Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 451–456 | Cite as

Decohesion Energy of \(\Sigma 5(012)\) Grain Boundaries in Ni as Function of Hydrogen Content

  • I. J. T. JensenEmail author
  • V. Olden
  • O. M. Løvvik


Degradation due to hydrogen embrittlement (HE) is initiated at the nanoscale, and the development of a predictive understanding of HE will have to consider the range all the way from atomic to macro scale. Density functional theory (DFT) can be used to calculate the effect of hydrogen in metals on the atomic scale. It is, however, limited to small models consisting of \(\sim 1000\) atoms, which puts the relevance for real-life scenarios into question. In the current study, the effect of model size is explored for two grain boundary (GB) systems, \(\Sigma 3[110](111)\) and \(\Sigma 5[100](012)\). For the latter, the preferred sites for H occupation and the sequence in which sites are filled upon increasing H contents are investigated, and decohesion energies are calculated as function of H content. Emphasis is laid on identifying the most physical model for these studies, by evaluating effects of model size and structural relaxation procedures. It is found that the decohesion energy does not decrease linearly with H content and has to be calculated explicitly for full H coverage to find out how much H absorption weakens the GB.


  1. 1.
    M. Dadfarnia, A. Nagao, S. Wang, M. L. Martin, B. P. Somerday, P. Sofronis: Int. J. Fract., 2015, vol. 196, pp. 223–43.CrossRefGoogle Scholar
  2. 2.
    E. D. Reese, W. Von Bestenbostel, T. Sebald, G. Paronis, D. Vanelli, Y. Mueller: Jom, 2014, vol. 66, pp. 1368–76.CrossRefGoogle Scholar
  3. 3.
    T. Watanabe: J. Phys. Colloq., 1985, vol. 46, pp. c4–555–c4566.CrossRefGoogle Scholar
  4. 4.
    L. Lim, T. Watanabe: Acta Metallurg., 1990, vol. 38, pp. 2507–16.CrossRefGoogle Scholar
  5. 5.
    A. Pundt, and R. Kirchheim: Ann. Rev. Mater. Res., 2006, vol. 36, pp. 555–608, 1531–7331.Google Scholar
  6. 6.
    R. Kirchheim: Acta Mater., 2007, vol. 55, pp. 5129–38.CrossRefGoogle Scholar
  7. 7.
    M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis, I. M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRefGoogle Scholar
  8. 8.
    M. Seita, J. P. Hanson, S. Gradecak, M. J. Demkowicz: Nature Comm., 2015, vol. 6, pp. 6164.CrossRefGoogle Scholar
  9. 9.
    I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, K. E. Nygren: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1085–103.CrossRefGoogle Scholar
  10. 10.
    J. Song, W. A. Curtin: Acta Mater., 2011, vol. 59, pp. 1557–69.CrossRefGoogle Scholar
  11. 11.
    Y. Takahashi, H. Kondo, R. Asano, S. Arai, K. Higuchi, Y. Yamamoto, S. Muto, N. Tanaka: Mater. Sci. Eng. A, 2016, vol. 661, pp. 211–6.CrossRefGoogle Scholar
  12. 12.
    C. Park, N. Kang, S. Liu, Corros. Sci., 2017, vol. 128, pp. 33–41.CrossRefGoogle Scholar
  13. 13.
    J. P. Hanson, A. Bagri, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Muto, Nat. Commun., 2018, vol. 9, pp. 3386.CrossRefGoogle Scholar
  14. 14.
    V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81.CrossRefGoogle Scholar
  15. 15.
    S. Bechtle, M. Kumar, B. P. Somerday, M. E. Launey, R. O. Ritchie: Acta Mater., 2009, vol. 57, pp. 4148–57.CrossRefGoogle Scholar
  16. 16.
    S. Jothi, T. N. Croft, L. Wright, A. Turnbull, S. G. R. Brown: Int. J. Hydrogen Energ., 2015, vol. 40, pp. 15105–23.CrossRefGoogle Scholar
  17. 17.
    S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. Deleo, S. K. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, M. J. Stavola: Rev. Mod. Phys., 1992, vol. 64, pp. 559–617.CrossRefGoogle Scholar
  18. 18.
    J. E. Angelo, N. R. Moody, M. I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.CrossRefGoogle Scholar
  19. 19.
    D. Connetable, Y. Wang, D. Tanguy: J. Alloys Compd., 2014, vol. 614, pp. 211–20.CrossRefGoogle Scholar
  20. 20.
    D. Tanguy, Y. Wang, D. Connetable: Acta Mater., 2014, vol. 78, pp. 135–43.CrossRefGoogle Scholar
  21. 21.
    Y. Wang, D. Connetable, D. Tanguy: Acta Mater., 2016, vol. 103, pp. 334–40.CrossRefGoogle Scholar
  22. 22.
    J. von Pezold, L. Lymperakis, J. Neugebeauer: Acta Mater., 2011, vol. 59, pp. 2969–80.CrossRefGoogle Scholar
  23. 23.
    D. Di Stefano, M. Mrovec, C. Elsässer: Acta Mater., 2015, vol. 98, pp. 306–12.CrossRefGoogle Scholar
  24. 24.
    X. Zhou, D. Marchand, D. L. McDowell, T. Zhu, J. Song: Phys. Rev. Lett., 2016, vol. 116, pp. 075502.CrossRefGoogle Scholar
  25. 25.
    D. L. Olmsted, S. M. Foiles, E. A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–703.CrossRefGoogle Scholar
  26. 26.
    S. Dai, Y. Xiang, D. J. Srolovitz: Acta Mater., 2014, vol. 69, pp. 162–74.CrossRefGoogle Scholar
  27. 27.
    W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller, J. E. Raynolds: Phys. Rev. B, 1999, vol. 60, pp. 7149–55.CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, J. A. Chevary, S. H.Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.CrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.CrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller: Comp Mater Sci, 1996, vol. 6, pp. 15–50.CrossRefGoogle Scholar
  31. 31.
    D. E. Jiang, E. Carter: Acta Mater., 2004, vol. 52, pp. 4801–7.CrossRefGoogle Scholar
  32. 32.
    A. Alvaro, I. J. T. Jensen, N. Kheradmand, O. M. Løvvik, V. Olden: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 16892–900.CrossRefGoogle Scholar
  33. 33.
    M. Yamaguchi, M. Shiga, H. Kaburaki: Science, 2005, vol. 307, pp. 393–7.CrossRefGoogle Scholar
  34. 34.
    Y. A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz: Phys. Rev. B, 2011, vol. 84, pp. 144121.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.SINTEF Materials PhysicsOsloNorway
  2. 2.SINTEF Materials Integrity and WeldingTrondheimNorway

Personalised recommendations