Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 493–503 | Cite as

Electrical Percolation and Aging of Gold Films

  • Ricardo HenriquezEmail author
  • Sergio Bravo
  • Roberto Roco
  • Valeria Del Campo
  • Daniel Kroeger
  • Patricio Häberle
Article
  • 42 Downloads

Abstract

Electric transport in ultrathin metallic films can be either “percolative” or “conductive” depending on the links between the islands that constitute the film. Once the formation of long-range connections is established within the film, the overlayer reaches the so-called percolation threshold. This work describes a quantitative study of the electrical resistance of Au films, as a function of coverage. Film resistance displays a universal scaling law dependence with a critical exponent of 1.9 before percolation, which changes to 1.5 after percolation. These values are between the theoretical predictions for the evolution of growth as 2D or 3D systems. Results also indicate deposition parameters have a defining role in the evolution of the resistance during fabrication. A rise in pressure or deposition rate results in a lowering of the thicknesses at which percolation occurs. A decrease in the substrate temperature modified the typical resistance behavior of the Volmer–Weber growth mode to a trend of 2D growth mode. Finally, results describing the effect of film’s aging on the electrical resistance are presented. Aging is responsible for an important reduction in the film resistance after percolation, a process mainly mediated by material diffusion.

Notes

Acknowledgments

RH recognizes Professor Luis Moraga Jaramillo (now deceased) for his enlightening discussions on the subjects related to this article. This work was partially financed by Projects “Fondecyt de Iniciación n°11140787” and “Fondecyt nº 1181905.” P.H. and V. Del C. acknowledge support from “Fondecyt n°1171584.” S.B. acknowledges support from “Beca de doctorado de Conicyt nº 21150492.”

References

  1. 1.
    [1] Raul C. Munoz, and Claudio Arenas, Appl. Phys. Rev., 2017, vol. 4, 0111102.CrossRefGoogle Scholar
  2. 2.
    Sarah L. T. Jones, Alfonso Sanchez-Soares, John J. Plombon, Ananth P. Kaushik, Roger E. Nagle, James S. Clarke, and James C. Greer, Phys. Rev. B, 2015, vol. 92, 115413.CrossRefGoogle Scholar
  3. 3.
    [3] Luis Moraga, Claudio Arenas, Ricardo Henriquez, and Basilio Solis, Phys. Status Solidi B, 2015, 252, 219–229.CrossRefGoogle Scholar
  4. 4.
    [4] Weihuang Xue and Wenhua Gu, AIP Advances, 2016, vol. 6, 115001.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    [6] Thorwald Andersson, J. Phys. D: Appl. Phys., 1976, vol. 9, 973.CrossRefGoogle Scholar
  7. 7.
    [7] G.B. Smith, A. I. Maaroof, and M. B. Cortie, Phys. Rev. B, 2008, vol. 78, 165418.CrossRefGoogle Scholar
  8. 8.
    [8] E.V. Barnat, D. Nagakura, P.-I. Wang, and T. -M. Lu, J. Appl. Phys., 2002, vol. 91, 1667-1672.CrossRefGoogle Scholar
  9. 9.
    [9] Ricardo Henriquez, Valeria Del Campo, Claudio Gonzalez-Fuentes, Jonathan Correa-Puerta, Luis Moraga, Marcos Flores, Rodrigo Segura, Sebastián Donoso, Francisca Marín, Sergio Bravo, and Patricio Häberle, Appl. Surf. Sci., 2017, vol. 407, 322–327.CrossRefGoogle Scholar
  10. 10.
    [10] I.M. Rycroft, B.L. Evans, Thin Solid Films, 1996, vol. 290-291, 283-288.CrossRefGoogle Scholar
  11. 11.
    [11] T. Andersson, J. Appl. Phys., 1976, vol. 47, 1752-56.CrossRefGoogle Scholar
  12. 12.
    [12] Stauffer D., Aharoni A. Introduction to percolation theory. London: Taylor and Francis; 1992.Google Scholar
  13. 13.
    [13] S. Bahamondes, S. Donoso, R. Henríquez, and M. Flores, Thin Solid Films, 2013, vol. 548, 646–649.CrossRefGoogle Scholar
  14. 14.
    Milton Ohring. Materials Science of Thin Films. Academic Press. Second Edition, 2002.Google Scholar
  15. 15.
    E. V. Barnat, D. Nagakura, and T.-M. Lu., Rev. Sci. Instrum., 2003, vol. 74, 3385.CrossRefGoogle Scholar
  16. 16.
    [16] L. Cheriet, H.H. Helbig, and S. Arajs, Phys. Rev. B, 1989, vol. 39, 9828.CrossRefGoogle Scholar
  17. 17.
    [17] A. I. Maaroof and B. L. Evans, J. Appl. Phys.,1994, vol. 76, 1047.CrossRefGoogle Scholar
  18. 18.
    [18]T. W. H. Oates, L. Ryves, and M. M. M. Bilek, Optics Express, 2007, vol. 15, 15987.CrossRefGoogle Scholar
  19. 19.
    I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum., 2007, vol. 78, 013705.CrossRefGoogle Scholar
  20. 20.
    F. Ruffino, V. Torrisi, G. Marletta, and M.G. Grimaldi, Appl. Phys. A, 2010, vol.100., 7.CrossRefGoogle Scholar
  21. 21.
    [21] Shi Xu, B. L. Evans, David I. Flynn and Cao En, Thin Solid films, 1994, vol. 238, 54-61.CrossRefGoogle Scholar
  22. 22.
    [22] Xuefeng Wang, Kuo-ping Chen, Ming Zhao, and David D. Nolte, Optics Express, 1992, vol.18, 24859.CrossRefGoogle Scholar
  23. 23.
    [23] Shi Xu, B. L. Evans, Journal of Materials Science, 1992, vol. 27, 3108-3117.CrossRefGoogle Scholar
  24. 24.
    [24] M. Tomellini, J. Appl. Phys., 1992, vol. 72, 1589.CrossRefGoogle Scholar
  25. 25.
    [25] F. Ruffino and M.G. Grimaldi, J. Appl. Phys., 2010, vol. 107, 104321.CrossRefGoogle Scholar
  26. 26.
    [26] R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, Phys. Rev. Lett., 1982, vol. 49, 1441.CrossRefGoogle Scholar
  27. 27.
    [27] Stefan Wagner and Astrid Pundt, Phys. Rev. B, 2008, vol. 78, 155131.CrossRefGoogle Scholar
  28. 28.
    K.H. Youm and Sung-Ik Lee, Solid State Communication, 1991, vol. 79, 1069-72.CrossRefGoogle Scholar
  29. 29.
    [29]Y. Yagil and G. Deutscher, Phys. Rev. B, 1992, vol. 46, 16115.CrossRefGoogle Scholar
  30. 30.
    [30] M. Octavio, G. Gutierrez, and J. Aponte, Phys. Rev. B, 1987, vol. 36, 2461.CrossRefGoogle Scholar
  31. 31.
    [31] Qu-Quan Wang, Jun-Bo Hun, Sha Ding, Gui-Guang Xiong, De-Chen Tian, Appl. Surf. Sci., 2005, vol. 243, 329-334CrossRefGoogle Scholar
  32. 32.
    [32] W. Bauhofer and J. Z. Kovacs, Composites Science and technology, 2009, vol. 69, 1486-1498CrossRefGoogle Scholar
  33. 33.
    N. Nakamura, N. Yoshimura, H. Ogi, and M. Hirao, J. Appl. Phys., 2015, vol. 118, 085302.CrossRefGoogle Scholar
  34. 34.
    [34] J. Wu, Z. Wang, K. Wu, J. Zhang, C. Li, D. Yin, Thin Solid Films, 1997, vol. 295, 315-319.CrossRefGoogle Scholar
  35. 35.
    Eungsun Byon, Thomas W. H. Oates, and André Anders, Appl. Phys. Lett., 2003, vol. 82, 1634.CrossRefGoogle Scholar
  36. 36.
    [36] V. Sabayev, N. Croitoru, A. Inberg, and Y. Shacham-Diamand, Materials Chemistry and Physics, 2011, vol. 127, 214–219.CrossRefGoogle Scholar
  37. 37.
    [37] S. K. So, H. H. Fong, C. F. Yeung, and N. H. Cheung, Appl. Phys. Lett., 2010, vol. 77, 1099.CrossRefGoogle Scholar
  38. 38.
    [38] H. Fredriksson, B. Persson, and L. Yström, Physica Scripta, 1971, vol. 3, 169-174.CrossRefGoogle Scholar
  39. 39.
    [39] Seok-Kyun Song, Seok-Keun Koh, Deuk Yeon Lee, and Hong-Koo Baik, Jpn. J. Appl. Phys., 2004, vol. 43, L15.CrossRefGoogle Scholar
  40. 40.
    [40] S. Blacher, F. Brouers, P. Gadenne, and J. Lafait, Journal of Applied Physics, 1993, vol. 74, 207.CrossRefGoogle Scholar
  41. 41.
    [41] I G Higginbotham, R H Williams and A J McEvoy
, J. Phys. D: Appl. Phys., 1975, vol. 8, 1033.CrossRefGoogle Scholar
  42. 42.
    [42] Hugo K. Christenson and Neil H. Thomson, Surface Science Reports, 2016, vol. 71, 367–390.CrossRefGoogle Scholar
  43. 43.
    [43] N. Alshwawreh, M. Militzer, D. Bizzotto, and J. C. Kuo, Microelectronic Engineering 2012, vol. 95, 26-33.CrossRefGoogle Scholar
  44. 44.
    M. Pattabi, N. Suresh, S. M. Chaudhari, A. Banerjee, D. M. Phase, A. Gupta, K. Mohan Rao, Thin Solid Films, 1998, vol. 322, 340-43.CrossRefGoogle Scholar
  45. 45.
    [45] Kevin A. Peterlinz and R. Georgiadis, Langmuir, 1996, vol. 12, 4731-4740.CrossRefGoogle Scholar
  46. 46.
    [46] I. A. Gladskikh, M. G. Gushchin, and T. A. Vartanyan, Semiconductors, 2018, Vol. 52, 671–674.CrossRefGoogle Scholar
  47. 47.
    Merel J. Lefferts, Krishnan Murugappan, Chen Wu, and Martin R. Castell, Applied Physics Letters, 2018, vol. 112, 251602.CrossRefGoogle Scholar
  48. 48.
    [48] Rudolf Hrach, Dusan Novotný, and Stanislav Novák, Vacuum, 2018, vol. 149, 279-283.CrossRefGoogle Scholar
  49. 49.
    [49] S. V. Tomilin, V. N. Berzhansky, E. T. Milyukova, O. A. Tomilina, and A. S. Yanovsky, Physics of the solid state, 2018, vol. 60, 1255.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Técnica Federico Santa MaríaValparaisoChile

Personalised recommendations