Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 837–855 | Cite as

Analysis of Misorientation Relationships Between Austenite Parents and Twins

  • A. F. Brust
  • S. R. NiezgodaEmail author
  • V. A. Yardley
  • E. J. Payton


The forward transformation from face-centered cubic austenite to body-centered cubic/tetragonal martensite in ferrous alloys can significantly influence the microstructure and mechanical properties of the material. Inferring possible high-temperature crystal orientations from observations of ambient temperature transformation microstructures is hindered by parent austenite–twin interactions and scatter in the orientation relationship. This creates a major limitation for studying variant selection phenomena and characterizing microstructural response to high-temperature thermomechanical processing conditions. In this work, composition tables are developed that detail the product variant boundary misorientation relationships for intra-parent, parent–twin, and twin–twin boundary intersections for the Kurdjumov–Sachs (KS), Nishiyama–Wassermann (NW), and an experimentally determined irrational orientation relationship. The frequently referenced KS and NW orientation relationships produce significantly different results from experimental observations. Furthermore, the introduction of a twin into the parent austenite introduces a substantially larger number of misorientation relationships when the orientation relationship is irrational. The effects of crystal symmetry on misorientation results are determined by considering both body-centered cubic and body-centered tetragonal martensite structures. Lastly, it is observed that some shared variants are found between twins and parents when assuming cubic symmetry but not tetragonal symmetry. The results and relationships may be useful towards accurate and consistent reconstructions of the parent austenite microstructure from observations of martensite.



AFB and SRN received support from the Air Force Office of Scientific Research (AFOSR) Summer Faculty Fellowship Program (SFFP) for the portion of this work performed at the Materials and Manufacturing Directorate of the Air Force Research Laboratory (AFRL/RX) and from the Dayton Area Graduate Studies Institute (DAGSI) for the portion of the work performed at Ohio State University. EJP was supported by the Deutsche Forschungsgemeinschaft (DFG) for the portion of this work completed at the Federal Institute for Materials Research and Testing (BAM) in Berlin (Grant PA 2285/1-1) and by the Metallic Materials and Processes Research Team for the portion performed at AFRL/RX. VAY was supported under DFG Grant YA 326/2-1 for the portion of the work performed at Ruhr-Universität Bochum.

Supplementary material

11661_2018_4977_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (pdf 5239 KB)
11661_2018_4977_MOESM2_ESM.txt (1 kb)
Supplementary material 2 (txt 1 KB)
11661_2018_4977_MOESM3_ESM.xlsx (144 kb)
Supplementary material 3 (xlsx 144 KB)


  1. 1.
    S. Morito, H. Tanaka, R. Konishi and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–1799.CrossRefGoogle Scholar
  2. 2.
    H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater., 2006, vol. 54, pp. 1279-1288CrossRefGoogle Scholar
  3. 3.
    G. Krauss, Hardenability Concepts with Applications to Steel (Warrendale, PA, AIME, 1978), pp. 229–248Google Scholar
  4. 4.
    G. Krauss and A.R. Marder: Metall. Trans., 1971, vol. 2, pp. 2343–2357.CrossRefGoogle Scholar
  5. 5.
    A. R. Marder and G. Krauss: ASM Trans., 1967, vol. 60, pp. 651–660.Google Scholar
  6. 6.
    V.A. Yardley, E.J. Payton, T. Matsuzaki, R. Sugiura, A.T. Yokobori Jr., S. Tsurekawa, Y. Hasegawa, Creep and Fracture of Engineering Materials and Structures. Proc. 12th Int. Conf. Creep and Fracture of Eng. Mater. and Struct. (JIMIS 11), held at Kyoto TERRSA, Kyoto, Japan, May 27 31, 2012, Edited by: K. Maruyama, F. Abe, M. Igarashi, K. Kishida, M. Suzuki, K. Yoshimi, The Jap. Ins. of Met, Sendai, 2012, paper C14Google Scholar
  7. 7.
    K. Kimura, N. Ohi, K. Shimazu and T. Matsuo: Scr. Mater., 1987, vol. 21, pp. 19–22.Google Scholar
  8. 8.
    V.A. Yardley, S. Fahimi and E.J. Payton: Mater. Sci. Technol, 2015, vol. 31, pp. 547–553.CrossRefGoogle Scholar
  9. 9.
    S.H. Hong and J. Yu: Scr. Mater. 1989, vol. 23, pp. 1057–1062.Google Scholar
  10. 10.
    S. Matsuda, T. Inoue, H. Mimura, Y. Okamura, Climax Molybdenum Development Company, Ltd., Japan, 1971, pp. 45–66.Google Scholar
  11. 11.
    Z. Guo, C.S. Lee and J.W. Morris: Acta. Mater., 2004, vol. 52(19), pp. 5511–5518.CrossRefGoogle Scholar
  12. 12.
    S. Morito, H. Yoshida, T. Maki and X. Huang: J. Mat. Sci. Eng. A, 2006, 438–440, pp. 237–240.CrossRefGoogle Scholar
  13. 13.
    S.K. Banerji, C.J. McMahon Jr. and H.C. Feng: Metall. Trans. A, 1978, vol. 9A, pp. 237–47.CrossRefGoogle Scholar
  14. 14.
    R.M. Horn and R.O. Ritchie: Metall. Trans. A, 1978, vol. 9A, pp. 1039–53.CrossRefGoogle Scholar
  15. 15.
    Z. Nishiyama: Sci. Rep., Tohoku Imperial Univ., vol. 23, pp. 637–64 (1934).Google Scholar
  16. 16.
    G. Wassermann: Über den Mechanismus der \(\alpha ->\gamma \) Umwandlung des Eisens (On the Mechanism of the \(\alpha -> \gamma \) Transformation of Iron). Mitteilungen aus dem Kais. Wilhelm. Inst. für Eisenforsch., vol. 17, pp. 149–55 (1935).Google Scholar
  17. 17.
    G. Kurdjumow, G. Sachs: Z. Physik, vol. 64, pp. 325–43 (1930).Google Scholar
  18. 18.
    J.W. Cahn, G. Kalonji: Proc. Int. Conf. Solid-Solid Phase Trans. Edited by: H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman., The Met. Soc. of AIME (1982).Google Scholar
  19. 19.
    A. B. Greninger and A. R. Troiano: Metall. Trans., 1949, vol. 185, pp. 590–598.Google Scholar
  20. 20.
    M.S. Wechsler, D.S. Lieberman and T.A. Read: Trans. AIME, 1953, vol. 197, pp. 1503–1515.Google Scholar
  21. 21.
    J.S. Bowles and J.K. Mackenzie: Acta. Metall. 1954, vol. 2, pp. 129–137.CrossRefGoogle Scholar
  22. 22.
    J.K. Mackenzie, J.S. Bowles, Acta. Metall. 1954, vol. 2, pp. 138-147CrossRefGoogle Scholar
  23. 23.
    J.S. Bowles and J.K. Mackenzie: Acta. Metall. 1954, vol. 2, pp. 224–234.CrossRefGoogle Scholar
  24. 24.
    J.K. Mackenzie, J.S. Bowles, Acta. Metall. 1957, vol. 5, pp. 137-149CrossRefGoogle Scholar
  25. 25.
    J.S. Bowles and J.K. Mackenzie: Acta Metall. 1962, vol. 10, pp. 625–636.CrossRefGoogle Scholar
  26. 26.
    Z. Nishiyama, M.E. Fine, C.M. Wayman: Martensitic Transformation, Materials Science and Technology. Academic Press, New York, 1978.Google Scholar
  27. 27.
    C.M. Wayman, Introduction to the Crystallography of Martensitic Transformations. Macmillan, Macmillan Series in Materials Science (, 1964)Google Scholar
  28. 28.
    H. Kitahara, R. Ueji, M. Ueda, N. Tsuji and Y. Minamino: Mater. Charact., 2005, vol. 54, pp. 378–386.CrossRefGoogle Scholar
  29. 29.
    M. Nikravesh, M. Naderi, G.H. Akbari: Mater. Sci. Eng., 2012, vol. 540, pp. 24–29.CrossRefGoogle Scholar
  30. 30.
    O. Sherby, J. Wadsworth, D. Lesuer, C. Syn: The c/a Ratio in Quenched Fe-C and Fe-N steels—A Heuristic Story. THERMEC, Vancouver, Canada, July 4-July 8 (2006).Google Scholar
  31. 31.
    V. Sinha, E.J. Payton, M. Gonzales, R.A. Abrahams, B.S. Song, Anal., vol. 6(6), pp. 610-618 (2017)CrossRefGoogle Scholar
  32. 32.
    E.J. Payton, A. Aghajani, F. Otto, G. Eggler and V.A. Yardley: Scr. Mater., 2012, vol. 66, pp. 1045–1048.CrossRefGoogle Scholar
  33. 33.
    C. Cayron: Acta Crystallogr., 2006, vol. 62(Pt 1), pp. 21–40.CrossRefGoogle Scholar
  34. 34.
    V.A. Yardley and E.J. Payton: Mater. Sci. Technol., 2014, vol. 30, pp. 1125–1130.CrossRefGoogle Scholar
  35. 35.
    M. Natori, Y. Futamura, T. Tsuchiyama, S. Takaki: Scr. Mater., 2005, vol. 53, pp. 603–608.CrossRefGoogle Scholar
  36. 36.
    M. Abbasi, T.W. Nelson, and C.D. Sorensen: J. Appl. Crystallogr., 2013, vol. 46, pp. 716–725.CrossRefGoogle Scholar
  37. 37.
    M. Abbasi, D.I. Kim, T.W. Nelso and M. Abbasi: Mater. Charact., 2014, vol. 95, pp. 219–231.CrossRefGoogle Scholar
  38. 38.
    G. Miyamoto, N. Iwata, N. Takayama and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393–6403.CrossRefGoogle Scholar
  39. 39.
    S. Cluff, T. Nelson, R. Song, D. Fullwood, IOP Conf. Ser. Mater. Sci. Eng., vol. 375 (2018)Google Scholar
  40. 40.
    A. Heinz and P. Neumann: Acta. Crstallogr. A, 1991, vol. A47, pp. 780–789.CrossRefGoogle Scholar
  41. 41.
    J.W. Christian, Jour. Phys. Colloq, 1974, vol. 35, pp. 65-76Google Scholar
  42. 42.
    V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman and G.T. Owen: Acta Mater., 2008, vol. 10, pp. 2363–2373.CrossRefGoogle Scholar
  43. 43.
    M.A. Bingham, B.K. Lograsso, F.C. Laabs, ULTRD6 110, 1312–1319 (2010)Google Scholar
  44. 44.
    Y.H. Chen, S.U. Park, D. Wei, G. Newstadt, M. Jackson, J.P. Simmons, M. De Graef, A.O. Hero: Microsc. Microanal., vol. 21, 2015, pp. 1–14.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. F. Brust
    • 1
  • S. R. Niezgoda
    • 1
    • 2
    Email author
  • V. A. Yardley
    • 3
    • 4
  • E. J. Payton
    • 5
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Eutextikon Computational Materials Consulting LLCStaffordUK
  4. 4.Institute for MaterialsRuhr-Universität BochumBochumGermany
  5. 5.Air Force Research Laboratory, Materials and Manufacturing DirectorateDaytonUSA

Personalised recommendations