Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 63–71 | Cite as

Effect of Cu Presence on Evolution of Mechanical and Magnetic Properties in a Novel Fe-Based Bulk Metallic Glass During Partial Annealing Process

  • S. HasaniEmail author
  • P. Rezaei-Shahreza
  • A. Seifoddini


Fe-based bulk metallic glasses (BMGs) often demonstrate extremely poor toughness at room temperature, which seriously limit their widespread application. This study is focused on the improvement of mechanical properties (especially toughness) and ferromagnetic manner of a new Fe-based BMG by using partial annealing and minor addition of Cu as an alloying element simultaneously. The results revealed that the volume fraction of crystalline phases increased with the minor addition of Cu during the partial annealing process. Therefore, maximum hardness and toughness were observed in the alloy with 0.25 at. pct Cu after annealing within a temperature range of the fourth crystallization stage due to the high Poisson’s ratios (υ) of this element and the presence of nano-crystalline phases in the amorphous matrix with an optimal average size. Also, saturation magnetization of the as-cast BMG increased with the minor addition of Cu due to the formation of short-range order regions. While with addition of Cu, this magnetic parameter was reduced in annealed alloys due to an increase in the concentration of non-magnetic Cu atoms around the α-Fe nano-crystals.


  1. 1.
    M.C. Miguel, P. Moretti, M. Zaiser, and S. Zapperi: Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 191–8.Google Scholar
  2. 2.
    H.B. Ke, H.Y. Xu, H.G. Huang, T.W. Liu, P. Zhang, M. Wu, P.G. Zhang, and Y.M. Wang: J. Alloys Compd., 2017, vol. 691, pp. 436–41.Google Scholar
  3. 3.
    R. Navamathavan, D. Arivuoli, G. Attolini, C. Pelosi, and C.K. Choi: Mater. Lett., 2006, vol. 60, pp. 2949–53.Google Scholar
  4. 4.
    K. Wu, N. Abriak, F. Becquart, P. Pizette, S. Remond, and S. Liu: Granul. Matter, 2017, vol. 19, p. 65.Google Scholar
  5. 5.
    S. Bensaada, M.T. Bouziane, and F. Mohammedi: Mater. Lett., 2011, vol. 65, pp. 2829–32.Google Scholar
  6. 6.
    F.F.F. Lavrentev: Mater. Sci. Eng., 1980, vol. 46, pp. 191–208.Google Scholar
  7. 7.
    I. Binkowski, G.P. Shrivastav, J. Horbach, S. V Divinski, and G. Wilde: Acta Mater., 2016, vol. 109, pp. 330–40.Google Scholar
  8. 8.
    W. Feng, L. Mu-sen, L. Yu-peng, and Q. Yong-xin: 2005, vol. 59, pp. 916–9.Google Scholar
  9. 9.
    A. Khalajhedayati and T.J. Rupert: Acta Mater., 2014, vol. 65, pp. 326–37.Google Scholar
  10. 10.
    F. Berto and P. Lazzarin: Mater. Sci. Eng. R Reports, 2014, vol. 75, pp. 1–48.Google Scholar
  11. 11.
    M. Stoica, J. Eckert, S. Roth, A.R. Yavari, and L. Schultz: J. Alloys Compd., 2007, vol. 434–435, pp. 171–5.Google Scholar
  12. 12.
    M.-H. Phan, H.-X. Peng, M.R. Wisnom, S.-C. Yu, and N. Chau: Compos. Part A Appl. Sci. Manuf., 2006, vol. 37, pp. 191–6.Google Scholar
  13. 13.
    N. Amini, M. Miglierini, and M. Hasiak: in AIP Conference Proceedings, vol. 1781, 2016, p. 020001.Google Scholar
  14. 14.
    H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, and J. Eckert: J. Magn. Magn. Mater., 2014, vol. 364, pp. 80–4.Google Scholar
  15. 15.
    H. Ikram, F.A. Khalid, M. Akmal, and Z. Abbas: J. Mater. Eng. Perform., doi:10.1007/s11665-017-2753-0.CrossRefGoogle Scholar
  16. 16.
    A. Makino, X. Li, K. Yubuta, C. Chang, T. Kubota, and A. Inoue: Scr. Mater., 2009, vol. 60, pp. 277–80.Google Scholar
  17. 17.
    M. Shi, Z. Liu, and T. Zhang: J. Magn. Magn. Mater., 2015, vol. 378, pp. 417–23.Google Scholar
  18. 18.
    X. Li, H. Kato, K. Yubuta, A. Makino, and A. Inoue: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2598–602.Google Scholar
  19. 19.
    P. Ramasamy, M. Stoica, S. Bera, M. Calin, and J. Eckert: J. Alloys Compd., 2017, vol. 707, pp. 78–81.Google Scholar
  20. 20.
    F. Saeidi and M. Nili-Ahmadabadi: Mater. Lett., 2015, vol. 143, pp. 108–11.Google Scholar
  21. 21.
    F. Gaertner and R. Bormann: J. Phys., 1990, vol. 51, pp. C495–9.Google Scholar
  22. 22.
    Y.G. Chen and B.X. Liu: Mater. Sci. Eng. B, 1998, vol. 52, pp. 1–7.Google Scholar
  23. 23.
    V.Z. Bengus, E.D. Tabachnikova, P. Duhaj, and V. Ocelík: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 823–32.Google Scholar
  24. 24.
    J.D. Schuler and T.J. Rupert: Acta Mater., 2017, vol. 140, pp. 196–205.Google Scholar
  25. 25.
    L.M. Williams and D.W. Hess: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1983, vol. 1, pp. 1810–19.Google Scholar
  26. 26.
    M.G. Scott: J. Mater. Sci., 1978, vol. 13, pp. 291–6.Google Scholar
  27. 27.
    L. Morsdorf, K.G. Pradeep, G. Herzer, A. Kovács, R.E. Dunin-Borkowski, I. Povstugar, G. Konygin, P. Choi, and D. Raabe: J. Appl. Phys., 2016, vol. 119, p. 124903.Google Scholar
  28. 28.
    M.J. Duarte, A. Kostka, J.A. Jimenez, P. Choi, J. Klemm, D. Crespo, D. Raabe, and F.U. Renner: Acta Mater., 2014, vol. 71, pp. 20–30.Google Scholar
  29. 29.
    Y. He, G.J. Shiflet, and S.J. Poon: Acta Metall. Mater., 1995, vol. 43, pp. 83–91.Google Scholar
  30. 30.
    H. Choi-yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Acta Mater., 2002, vol. 50, pp. 2737–45.Google Scholar
  31. 31.
    H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Scr. Mater., 2001, vol. 45, pp. 1039–45.Google Scholar
  32. 32.
    H. Choi-Yim, J. Schroers, and W.L. Johnson: Appl. Phys. Lett., 2002, vol. 80, pp. 1906–8.Google Scholar
  33. 33.
    L. Dou, H. Liu, L. Hou, L. Xue, W. Yang, Y. Zhao, C. Chang, and B. Shen: J. Magn. Magn. Mater., 2014, vol. 358–359, pp. 23–6.Google Scholar
  34. 34.
    M. Stoica, P. Ramasamy, I. Kaban, S. Scudino, M. Nicoara, G.B.M. Vaughan, J. Wright, R. Kumar, and J. Eckert: Acta Mater., 2015, vol. 95, pp. 335–42.Google Scholar
  35. 35.
    S. Tao, T. Ma, H. Jian, Z. Ahmad, H. Tong, and M. Yan: Mater. Sci. Eng. A, 2010, vol. 528, pp. 161–4.Google Scholar
  36. 36.
    H.E. Khalifa, J.L. Cheney, and K.S. Vecchio: Mater. Sci. Eng. A, 2008, vol. 490, pp. 221–8.Google Scholar
  37. 37.
    A. Masood, V. Ström, L. Belova, K. V. Rao, and J. Ågren: J. Appl. Phys., 2013, vol. 113, p. 013505.Google Scholar
  38. 38.
    X. Li, Y. Zhang, H. Kato, A. Makino, and A. Inoue: Key Eng. Mater., 2012, vol. 508, pp. 112–6.Google Scholar
  39. 39.
    A. Inoue, B.L. Shen, and C.T. Chang: Acta Mater., 2004, vol. 52, pp. 4093–9.Google Scholar
  40. 40.
    E. Civan, K. Sarlar, and I. Kucuk: Philos. Mag., 2017, vol. 97, pp. 1464–78.Google Scholar
  41. 41.
    M. Shi, Z. Liu, and T. Zhang: J. Mater. Sci. Technol., 2015, vol. 31, pp. 493–7.Google Scholar
  42. 42.
    H.Y. Jung and S. Yi: Intermetallics, 2010, vol. 18, pp. 1936–40.Google Scholar
  43. 43.
    J. Garus, S. Garus, M. Nabiałek, and M. Szota: Acta Phys. Pol. A, 2014, vol. 126, pp. 954–6.Google Scholar
  44. 44.
    J.E. Gao, H.X. Li, Z.B. Jiao, Y. Wu, Y.H. Chen, T. Yu, and Z.P. Lu: Appl. Phys. Lett., 2011, vol. 99, p. 052504.Google Scholar
  45. 45.
    Q.-J. Chen, J. Shen, H.-B. Fan, J.-F. Sun, Y.-J. Huang, and G. Mccartney: Chinese Phys. Lett., 2005, vol. 22, pp. 1736–8.Google Scholar
  46. 46.
    Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, and J.F. Sun: J. Mater. Res., 2007, vol. 22, pp. 358–63.Google Scholar
  47. 47.
    J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang: Appl. Phys. Lett., 2005, vol. 86, p. 151907.Google Scholar
  48. 48.
    P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: J. Alloys Compd., 2018, vol. 738, pp. 197–205.Google Scholar
  49. 49.
    S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, and M. Hakimi: J. Non. Cryst. Solids, 2018, vol. 497, pp. 40–47.Google Scholar
  50. 50.
    H.W. Yang, J. Wen, M.X. Quan, and J.Q. Wang: J. Non. Cryst. Solids, 2009, vol. 355, pp. 235–8.Google Scholar
  51. 51.
    T. Gloriant, M. Gich, S. Suriñach, M.D. Baró, and A.L. Greer: J. Metastable Nanocrystalline Mater., 2000, vol. 8, pp. 365–70.Google Scholar
  52. 52.
    S. Cardinal, J.M. Pelletier, M. Eisenbart, and U.E. Klotz: Mater. Sci. Eng. A, 2016, vol. 660, pp. 158–65.Google Scholar
  53. 53.
    S. Enzo, S. Polizzi, and A. Benedetti: Zeitschrift für Krist. - Cryst. Mater., 1985, vol. 170, pp. 275–87.Google Scholar
  54. 54.
    A. Inoue, H. Tomioka, and T. Masumoto: J. Mater. Sci., 1983, vol. 18, pp. 153–60.Google Scholar
  55. 55.
    A.L. Greer: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 68–72.Google Scholar
  56. 56.
    P. Scherrer: Math. Klasse, 1918, vol. 2, pp. 98–100.Google Scholar
  57. 57.
    P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: Thermochim. Acta, 2017, vol. 652, pp. 119–25.Google Scholar
  58. 58.
    P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: J. Non. Cryst. Solids, 2017, vol. 471, pp. 286–94.Google Scholar
  59. 59.
    J. Dutkiewicz, A. Kukula, L. Litynska-Dobrzynska, and W. Maziarz: Mater. Trans., 2011, vol. 52, pp. 304–8.Google Scholar
  60. 60.
    C. Suryanarayana, T. Klassen, and E. Ivanov: J. Mater. Sci., 2011, vol. 46, pp. 6301–15.Google Scholar
  61. 61.
    H.S. Kim: Scr. Mater., 2003, vol. 48, pp. 43–9.Google Scholar
  62. 62.
    A.L. Greer, K.L. Rutherford, and I.M. Hutchings: Int. Mater. Rev., 2002, vol. 47, pp. 87–112.Google Scholar
  63. 63.
    Y.H. Kim, K. Hiraga, A. Inoue, T. Masumoto, and H.H. Jo: Mater. Trans. JIM, 1994, vol. 35, pp. 293–302.Google Scholar
  64. 64.
    T. Gloriant: J. Non. Cryst. Solids, 2003, vol. 316, pp. 96–103.Google Scholar
  65. 65.
    Z.C. Zhong, X.Y. Jiang, and A.L. Greer: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 531–5.Google Scholar
  66. 66.
    H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, and R.J. Dowding: Philos. Mag. Lett., 2006, vol. 86, pp. 333–45.Google Scholar
  67. 67.
    V. Keryvin, X.D. Vu, V.H. Hoang, and J. Shen: J. Alloys Compd., 2010, vol. 504, pp. S41–4.Google Scholar
  68. 68.
    J. Eckert, U. Kühn, J. Das, S. Scudino, and N. Radtke: Adv. Eng. Mater., 2005, vol. 7, pp. 587–96.Google Scholar
  69. 69.
    C. Wang, M. Li, M. Zhu, H. Wang, C. Qin, W. Zhao, and Z. Wang: Nanomaterials, 2017, vol. 7, p. 352.Google Scholar
  70. 70.
    H. Kimura, A. Inoue, S. Yamaura, K. Sasamori, M. Nishida, Y. Shinpo, and H. Okouchi: Mater. Trans., 2003, vol. 44, pp. 1167–71.Google Scholar
  71. 71.
    D. Sherman and D.G. Brandon: J. Mater. Res., 1997, vol. 12, pp. 1335–43.Google Scholar
  72. 72.
    K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1, pp. 13–6.Google Scholar
  73. 73.
    A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen: J. Adv. Ceram., 2013, vol. 2, pp. 87–102.Google Scholar
  74. 74.
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: J. Am. Ceram. Soc., 1981, vol. 64, pp. 533–8.Google Scholar
  75. 75.
    B. Gludovatz, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic: Acta Mater., 2014, vol. 70, pp. 198–207.Google Scholar
  76. 76.
    P. Lowhaphandu and J.J. Lewandowski: Scr. Mater., 1998, vol. 38, pp. 1811–7.Google Scholar
  77. 77.
    J. Qiao, H. Jia, and P.K. Liaw: Mater. Sci. Eng. R Reports, 2016, vol. 100, pp. 1–69.Google Scholar
  78. 78.
    M. Jafary-Zadeh, G. Praveen Kumar, P. Branicio, M. Seifi, J. Lewandowski, and F. Cui: J. Funct. Biomater., 2018, vol. 9, p. 19.Google Scholar
  79. 79.
    A. Inoue and A. Takeuchi: Acta Mater., 2011, vol. 59, pp. 2243–67.Google Scholar
  80. 80.
    M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska: MRS Commun., 2013, vol. 3, pp. 1–12.Google Scholar
  81. 81.
    M. Lundberg, J. Saarimäki, J.J. Moverare, and R.L. Peng: J. Mater. Sci., 2018, vol. 53, pp. 2766–73.Google Scholar
  82. 82.
    G. Abrosimova and A. Aronin: Mater. Lett., 2017, vol. 206, pp. 64–6.Google Scholar
  83. 83.
    G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina: Mater. Lett., 2013, vol. 97, pp. 15–7.Google Scholar
  84. 84.
    B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc., 1979, vol. 62, pp. 347–50.Google Scholar
  85. 85.
    D.B. Marshall, B.R. Lawn, and P. Chantikul: J. Mater. Sci., 1979, vol. 14, pp. 2225–35.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringYazd UniversityYazdIran

Personalised recommendations