Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 257–270 | Cite as

Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process

  • Judy SchneiderEmail author
  • Poshou Chen
  • Arthur C. NunesJr.
Article
  • 70 Downloads

Abstract

The ultimate design values for a friction stir weld (FSW) are not based on the average strength, but the lowest strength or outlier. Thus, the robustness of the process could be ultimately increased by understanding and minimizing the sources of data scatter within the mechanical properties of a FSW panel. Internal voids are known to result in reduced strength, but are detectable using non-destructive evaluation (NDE). Other metallurgical discontinuities, such as internal oxides, are difficult to detect using NDE and are often blamed for random variations in the mechanical properties of FSWs. Current efforts to minimize internal oxides within a FSW nugget focus on cleaning of the workpiece surfaces prior to the FSW. This study proposes that internal oxides within FSW interiors may occur during the process and not from a redistribution of native oxides on the workpiece surfaces as commonly cited. Typical temperatures during FSWing of aluminum and its alloys are reported to be in the range of 0.7 to 0.9 the absolute melting temperature. At the upper limit of this range, the expected temperature is above 500 °C where the oxidation rate of aluminum changes from self-limiting parabolic to linear. At these temperatures, entrained air could enhance the oxidization of the freshly sheared surfaces and become trapped. In this study, a series of intentionally “hot” FSWs were made in three different thickness panels of AA2219 (0.95, 1.27, and 1.56 cm) at two different weld pitches. Microstructures from the as-welded FSW nugget showed thickened grain boundary regions. Cracks were observed in transverse sections of the FSW nugget after tensile tests. Electron microscopy found evidence of eutectic structures along grain boundaries. At the expected FSW temperatures, the eutectic temperature of 548 °C could be exceeded thereby causing localized melting. Thus in addition to oxidation of the freshly sheared surfaces, exposure of molten metal to air would also promote formation of internal oxides. Results from this study will assist in a better understanding of strength outliers in FSWs and provide methodology for minimizing their occurrence.

References

  1. 1.
    B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084Google Scholar
  2. 2.
    H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.CrossRefGoogle Scholar
  3. 3.
    H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007.Google Scholar
  4. 4.
    A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003.Google Scholar
  5. 5.
    H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.CrossRefGoogle Scholar
  6. 6.
    A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006.Google Scholar
  7. 7.
    D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.CrossRefGoogle Scholar
  8. 8.
    Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.CrossRefGoogle Scholar
  9. 9.
    S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.CrossRefGoogle Scholar
  10. 10.
    Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.CrossRefGoogle Scholar
  11. 11.
    K.N. Krishnan: Mater. Sci. Eng. A-Struct., 2002, vol. 327 pp. 246–251.CrossRefGoogle Scholar
  12. 12.
    H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000.Google Scholar
  13. 13.
    R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.CrossRefGoogle Scholar
  14. 14.
    H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.CrossRefGoogle Scholar
  15. 15.
    X. Long and S.K. Khanna:Sci. Technol. Weld Joining, 2005, 10, 482–87.CrossRefGoogle Scholar
  16. 16.
    Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.CrossRefGoogle Scholar
  17. 17.
    K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311CrossRefGoogle Scholar
  18. 18.
    P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.CrossRefGoogle Scholar
  19. 19.
    U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan.Google Scholar
  20. 20.
    G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005.Google Scholar
  21. 21.
    J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135.Google Scholar
  22. 22.
    J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s.Google Scholar
  23. 23.
    J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82sGoogle Scholar
  24. 24.
    J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s.Google Scholar
  25. 25.
    R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88.Google Scholar
  26. 26.
    L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.CrossRefGoogle Scholar
  27. 27.
    P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.CrossRefGoogle Scholar
  28. 28.
    K. Thomas and M.W. Roberts: J. Appl. Phys., 1961, 32, 70-75CrossRefGoogle Scholar
  29. 29.
    A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968.Google Scholar
  30. 30.
    M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.CrossRefGoogle Scholar
  31. 31.
    J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.CrossRefGoogle Scholar
  32. 32.
    W.W. Smeltzer: J. Electrochem. Soc., 1956, 103, 209-214.CrossRefGoogle Scholar
  33. 33.
    L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.CrossRefGoogle Scholar
  34. 34.
    E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.CrossRefGoogle Scholar
  35. 35.
    W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786.Google Scholar
  36. 36.
    C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.CrossRefGoogle Scholar
  37. 37.
    Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Judy Schneider
    • 1
    Email author
  • Poshou Chen
    • 2
  • Arthur C. NunesJr.
    • 3
  1. 1.University of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Jacobs ESSSTMarshall Space Flight CenterHuntsvilleUSA
  3. 3.Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations