Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 191–198 | Cite as

X-Ray Rocking Curve Measurements of Dislocation Density and Creep Strain Evolution in Gamma Prime-Strengthened Ni-Base Superalloys

  • K. G. V. Siva KumarEmail author
  • Ramkumar Oruganti
  • Partha Chatterjee
Article
  • 122 Downloads

Abstract

A linear relationship between mobile dislocation density and creep strain has generally been assumed in various models of creep in Ni-base superalloys. No stress or temperature dependence is assumed in such relationships. The current study aims to verify this relationship by use of an X-ray rocking curve-based method on DS GTD111™, a directionally solidified (DS) nickel-base turbine blade alloy. A new measurement scheme tailored for such large-grained, DS alloys using simultaneous tilt–twist methodology is outlined. Multiple test sets of DS GTD111™, creep tested under varying boundary conditions, were measured using this technique. The resulting rocking curve full-width-half-maxima (square root of the dislocation density) were found to correlate to creep strain by a simple linear transfer function with no systematic dependence on stress or temperature. As a validation case, application of this transfer function is demonstrated for long-term test data.

Notes

Acknowledgments

Funding from the Services-AT, GE Global Research managed by Russell Irving and Vinod Kumar is gratefully acknowledged. Mallikarjun Karadge (GE Global Research, Niskayuna) and Stefan Haaga (Bruker) are thanked for their invaluable guidance during this reserch. B. K. Prasanna is thanked for performing the meticulous metallography work. The authors gratefully acknowledge the transmission electron microscopy work done by Amuthan Ramar.

References

  1. 1.
    B.F. Dyson and M. McLean: Acta Met., 1983, vol. 31, pp. 17-27.CrossRefGoogle Scholar
  2. 2.
    B. F. Dyson: Mat. Sci. Tech., 2009, vol. 25, 213-220.CrossRefGoogle Scholar
  3. 3.
    Z. Zhu, H. Basoalto, N. Warnken and R. C. Reed: Acta Mat., 2012, vol. 60, pp. 4888-4900.CrossRefGoogle Scholar
  4. 4.
    A. Manonukul, F.P.E. Dunne and D. Knowles: Acta Met., 2002, vol. 50, pp. 2917-2931.Google Scholar
  5. 5.
    T. Ungar: Pow. Diff., 2008, vol. 23, pp. 125-132.CrossRefGoogle Scholar
  6. 6.
    A. Borbely and T. Ungar: Comp. Rend. Phys., 2012, vol. 13, pp. 293-306.CrossRefGoogle Scholar
  7. 7.
    G. Zilahi, T. Ungar and G. Tichy: J. Appl. Cryst., 2015, vol. 48, pp. 418-430.CrossRefGoogle Scholar
  8. 8.
    B. E. Warren: X-ray Diffraction, 1969.Google Scholar
  9. 9.
    G. K. Williamson and W. H. Hall: Acta Metall., 1953, vol.1, pp. 22-31.CrossRefGoogle Scholar
  10. 10.
    P. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by real Crystals, 1969.Google Scholar
  11. 11.
    M. Wilkens: in Fundamental Aspects of Dislocation Theory, NBS Special Publication No. 317 II, J.A. Simmons, R. de Wit, and R. Bullough, eds., US Department of Commerce, 1970a, pp. 1195–1221.Google Scholar
  12. 12.
    M. Wilkens: Phys. Status Solidi. A, 1970b, vol. 2, pp. 359-370.CrossRefGoogle Scholar
  13. 13.
    T. Ungar and A. Borbely: Appl. Phys. Lett., 1996, vol. 69, pp. 3173-3175.CrossRefGoogle Scholar
  14. 14.
    T. Ungar, I. Dragomir, A. Revesz and A. Borbely: J. Appl. Cryst., 1999, vol. 32, pp. 992-1002.CrossRefGoogle Scholar
  15. 15.
    T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely: J. Appl. Cryst., 2001, vol. 34, pp. 298-310.CrossRefGoogle Scholar
  16. 16.
    I. Groma: Phys. Rev B, 1998, vol. 57, pp. 7535-7542.CrossRefGoogle Scholar
  17. 17.
    N. S. Husseini, D. P. Kumah, J. Z. Yi, C. J. Torbet, D. A. Arms, E. M. Dufresne, T. M. Pollock, J. W. Jones and R. Clarke: Acta Mat., 2008, vol. 56, pp. 4715-4723.CrossRefGoogle Scholar
  18. 18.
    B. D. Cullity and S. R. Stock: Elements of X-ray diffraction.Google Scholar
  19. 19.
    L. V. Azaroff: Progress in Solid State Chemistry, 1964, vol.1, pp. 347-379.CrossRefGoogle Scholar
  20. 20.
    A. D. Kurtz, S. A. Kulin and B. L. Averbach: Phys. Rev., 1956, vol. 101(4), pp. 1285-1291.CrossRefGoogle Scholar
  21. 21.
    K. J. Bachmann, T. O. Baldwin and F. W. Young Jr.: J. App. Phys., 1970, vol. 41(12), pp. 4783-4789.CrossRefGoogle Scholar
  22. 22.
    M. J. Hordon and B. L. Averbach: Acta Met., 1961, vol. 9, pp. 237-246.CrossRefGoogle Scholar
  23. 23.
    K. Igashira: The Japan Soc. of Mech. Eng., 2008, vol. 74(739), pp. 308-314.CrossRefGoogle Scholar
  24. 24.
    J.W. Aveson, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noel, N. D’Souza, and H.J. Stone: Eurosuperalloys, 2014, MATEC Web Conf., vol. 14, 05003, pp. 1–5.Google Scholar
  25. 25.
    R. Oruganti, A. Shukla, S. Nalawade, K.G.V. Siva Kumar, T. Vishwanath, S. Sarkar, S. Sondhi, A. Wessman, D. Wei, A. Powell, K. Bain, J. Schaeffer, A. Peck, M. Arnett, G. Shastry, and F. Mastromatteo: ASME J. Eng. Mater. Technol., 2018, vol. 141, pp. 011001-1-5.Google Scholar
  26. 26.
    Online document: Sampling from finite populations, http://wps.prenhall.com/wps/media/objects/9431/9657451/Ch_07/levine-smume6_topic_07-06.pdf, accessed 24th Nov 2017.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • K. G. V. Siva Kumar
    • 1
    Email author
  • Ramkumar Oruganti
    • 1
  • Partha Chatterjee
    • 2
  1. 1.John F Welch Technology CentreGE Global ResearchBangaloreIndia
  2. 2.Dept. of Physics and ElectronicsVivekananda MahavidyalayaHooghlyIndia

Personalised recommendations