Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 816–836 | Cite as

Microstructure-Property Relationships of Novel Ultra-High-Strength Press Hardening Steels

  • Henri Järvinen
  • Mari Honkanen
  • Olli Oja
  • Martti Järvenpää
  • Pasi Peura
Article
  • 93 Downloads

Abstract

The industrial significance of microalloyed martensitic steels manufactured via cold rolling, reaustenitization, and quenching has been typically recognized as low. However, it is currently believed that microalloying can improve the in-service properties of ultra-high-strength press hardening steels. In this work, five 34MnB5-based steels were designed to address the role of Ti and V when combined with Cr or Mo. Microstructure-property relationships were analyzed after die quenching and additional bake hardening (BH) heat treatment using advanced methods of microscopy, glow discharge optical emission spectroscopy, quasi-static tensile tests, and three-point bending tests. Results indicate that both Ti and V can provide grain size refinement through the formation of stabile nanosized precipitates. The BH treatment improved postuniform elongation values, indicating a trend of improved ductility. However, the expected improvements in bendability were clearly confirmed only for two V-microalloyed steels with the alloying concepts of 0.3Cr-0.15V-0.03Al-0.02Ti-0.0020B and 0.3Mo-0.15V-0.0060N (without Al-Ti-B additions) (wt pct). Thus, it was discovered that microalloying with V, when combined with either Cr or Mo, provides a promising combination of mechanical properties as far as the austenitization parameters are appropriately controlled.

Notes

Acknowledgments

We thank Johan Lönnqvist and Christer Eggertson (Swerea KIMAB) for carrying out laboratory melts, Jussi Paavola (University of Oulu) for performing laboratory rolling of experimental steels, and Sanna Järn (SSAB Europe Oy) for implementing GDOES analysis. This study was financially supported by the Finnish Funding Agency for Technology and Innovation (Tekes) in the Breakthrough Steels and Applications Program of the Finnish Metals and Engineering Competence Cluster (FIMECC Ltd), which is gratefully acknowledged. The author thanks the Tampere University of Technology (TUT’s Graduate School), Emil Aaltonen Foundation, and Finnish Foundation for Technology Promotion for financial support.

References

  1. 1.
    K. Mori, P.F. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, and J. Yanagimoto: CIRP Ann.-Manuf. Techn., 2017, vol. 66 (2), pp. 755–77.CrossRefGoogle Scholar
  2. 2.
    T. Gerber, I. Heckelmann, N. Vives Diaz, and F.-J. Lenze: Proc. 4th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Luleå, 2013, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2013, pp. 145–52.Google Scholar
  3. 3.
    G. Krauss: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 40–57.CrossRefGoogle Scholar
  4. 4.
    M. Naderi: Doctoral Thesis, University of Aachen, Aachen, 2007.Google Scholar
  5. 5.
    H. Mohrbacher: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 213–20.Google Scholar
  6. 6.
    A. Tokizawa, K. Yamamoto, Y. Takemoto, and T. Senuma: Proc. 4th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Luleå, 2013, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2013, pp. 473–79.Google Scholar
  7. 7.
    P. Larour, H. Pauli, T. Kurz, and T. Hebesberger: Proc. Ann. Conf. Int. Deep Drawing Research Group (IDDRG 2010), Graz, 2010.Google Scholar
  8. 8.
    J. Bian, L. Wang, H. Mohrbacher, H.Z. Lu, and W.J. Wang: Adv. Mater. Res., 2015, vol. 1063, pp. 7–20.Google Scholar
  9. 9.
    T. Kurz, P. Larour, J. Lackner, T. Steck, and G. Jesner: Proc. Ann. Conf. Int. Deep Drawing Research Group (IDDRG 2016), Linz, 2016, E. Till et al., eds., 2016, pp. 414–27.Google Scholar
  10. 10.
    D. Fan, H. Kim, and B. De Cooman: Steel Res. Int., 2009, vol. 80 (3), pp. 241–48.Google Scholar
  11. 11.
    H. Järvinen, M. Honkanen, M. Järvenpää, and P. Peura: J. Mater. Process. Technol., 2018, vol. 252, pp. 90–104.CrossRefGoogle Scholar
  12. 12.
    P. Dietsch, K. Tihay, S. Cobo, S. Sarkar, D. Hasenpouth, and D. Cornette: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 629–38.Google Scholar
  13. 13.
    J. Bian, H. Lu, W. Wang, and A. Guo: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 600–09.Google Scholar
  14. 14.
    J. Wang, Y. Liu, Q. Lu, J. Pang, Z. Wang, C.M. Enloe, J.P. Singh, and C.D. Horvath: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., pp. 717–27.Google Scholar
  15. 15.
    W.S. Choi and B.C. De Cooman: Steel Res. Int., 2014, vol. 85 (5), pp. 824–35.CrossRefGoogle Scholar
  16. 16.
    J. Bian and H. Mohrbacher: Proc. AIST Int. Symp. of New Developments of Advanced High Strength Sheet Steels, CO, p. 251.Google Scholar
  17. 17.
    K. Hikida, T. Nishibata, H. Kikuchi, T. Suzuki, and N. Nakayama: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, eds., 2015, pp. 127–34.Google Scholar
  18. 18.
    M. Maikranz-Valentin: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 317–24.Google Scholar
  19. 19.
    S. Otani, M. Kozuka, T. Murakami, J. Naito, A. Pichler, and T. Kurz: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, eds., 2015, pp. 411–16.Google Scholar
  20. 20.
    B. Hutchinson, D. Martin, O. Karlsson, F. Lindberg, H. Thoors, R.K.W. Marceau, and A.S. Taylor: Mater. Sci. Technol., 2017, vol. 33 (4), pp. 497–506.CrossRefGoogle Scholar
  21. 21.
    M. Matsumoto, Y. Takemoto, and T. Senuma: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, 2015, pp. 55–63.Google Scholar
  22. 22.
    T. Kishimoto, Y. Takemoto, and T. Senuma: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 187–94.Google Scholar
  23. 23.
    H. Asahi: ISIJ Int., 2002, vol. 42 (10), pp. 1150–55.CrossRefGoogle Scholar
  24. 24.
    F. Han, B. Hwang, D. Suh, Z. Wang, D.L. Lee, and S. Kim: Met. Mater. Int., 2008, vol. 14 (6), p. 667–72.CrossRefGoogle Scholar
  25. 25.
    W.T. Geng, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2001, vol. 63, art. no. 165415.Google Scholar
  26. 26.
    H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54 (5), pp. 1279–88.CrossRefGoogle Scholar
  27. 27.
    T.N. Baker: Ironmak. Steelmak., 2016, vol. 43 (4), pp. 264–307.CrossRefGoogle Scholar
  28. 28.
    D.K. Matlock and J.G. Speer: Mater. Sci. Technol., 2009, vol. 25 (9), pp. 1118–25.CrossRefGoogle Scholar
  29. 29.
    S.-C. Wang and P.-W. Kao: J. Mater. Sci., 1993, vol. 28 (19), pp. 5169–75.CrossRefGoogle Scholar
  30. 30.
    D. Glisic, N. Radovic, A. Koprivica, A. Fadel, and D. Drobnjak: ISIJ Int., 2010, vol. 50, pp. 601–06.CrossRefGoogle Scholar
  31. 31.
    H. Järvinen, M. Isakov, T. Nyyssönen, M. Järvenpää, and P. Peura: Mater. Sci. Eng. A, 2016, vol. 676, pp. 109–20.CrossRefGoogle Scholar
  32. 32.
    O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko: Met. Sci. Heat Treat., 1984, vol. 26 (1), pp. 27–31.CrossRefGoogle Scholar
  33. 33.
    “Steel. Determination of Yield Strength Increase by the Effect of Heat Treatment (Bake-Hardening-Index),” EN 10325:2006, BSI, 2006.Google Scholar
  34. 34.
    T. Nyyssönen, M. Isakov, P. Peura, and V.-T. Kuokkala: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2587–90.CrossRefGoogle Scholar
  35. 35.
    ImageJ (Image Processing and Analysis in Java), https://imagej.nih.gov/ij/index.html, accessed 24 May 2018.
  36. 36.
    VDA 238-100 test specification draft: Plate Bending Test for Metallic Materials. Accessed 12 2010.Google Scholar
  37. 37.
    T. Nishibata and N. Kojima: J. Alloy Compd., 2013, vol. 577 (0), pp. 549–54.CrossRefGoogle Scholar
  38. 38.
    G. Krauss: ISIJ Int., 1995, vol. 35 (4), pp. 349–59.CrossRefGoogle Scholar
  39. 39.
    W.S. Choi, J. Lee, and B.C. De Cooman: Mater. Sci. Eng. A, 2015, vol. 639, pp. 439–47.CrossRefGoogle Scholar
  40. 40.
    R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, and A. Charai: Acta Mater., 1999, vol. 47 (12), pp. 3475–81.CrossRefGoogle Scholar
  41. 41.
    Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong: Mater. Des., 2012, vol. 34, pp. 427–34.CrossRefGoogle Scholar
  42. 42.
    S. Aminorroaya and R. Dippenaar: J. Microsc.-Oxford, 2008, vol. 232, pp. 123–29.CrossRefGoogle Scholar
  43. 43.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, pp. 81–211.Google Scholar
  44. 44.
    R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, Scand. J. Metall., 1999, vol. 28, pp. 186–241.Google Scholar
  45. 45.
    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, ISIJ Int., 2004, vol. 44 (11), pp. 1945–51.CrossRefGoogle Scholar
  46. 46.
    S. Zajac, T. Siwecki, W.B. Hutchinson, and R. Lagneborg: ISIJ Int., 1998, vol. 38 (10), pp. 1130–39.CrossRefGoogle Scholar
  47. 47.
    S.-I. Tabata, K. Hikida, and K. Kusumi: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, 2017, pp. 299–307.Google Scholar
  48. 48.
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 98, pp. 81–93.CrossRefGoogle Scholar
  49. 49.
    B. Ju, H. Wu, D. Tang, and N. Dang: J. Iron Steel Res. Int., 2016, vol. 23 (5), pp. 495–500.CrossRefGoogle Scholar
  50. 50.
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Scripta Mater., 2016, vol. 110, pp. 96–100.CrossRefGoogle Scholar
  51. 51.
    M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol. 79 (2), pp. 92–97.CrossRefGoogle Scholar
  52. 52.
    M. Saeglitz and G. Krauss: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 377–87.CrossRefGoogle Scholar
  53. 53.
    S.C. Kennett, G. Krauss, and K.O. Findley: Scripta Mater., 2015, vol. 107, pp. 123–26.CrossRefGoogle Scholar
  54. 54.
    A.G. Kostryzhev, A. Al Shahrani, C. Zhu, J.M. Cairney, S.P. Ringer, C.R. Killmore, and E.V. Pereloma: Mater. Sci. Eng. A, 2014, vol. 607A, pp. 226–35.CrossRefGoogle Scholar
  55. 55.
    W.C. Leslie and R. Sober: ASM Trans. Q., 1967, vol. 60 (1), pp. 99–111.Google Scholar
  56. 56.
    D.H. Sulistiyo, L. Cho, E.J. Seo, and B.C. De Cooman: Mater. Sci. Technol., 2016, pp. 1–14.Google Scholar
  57. 57.
    A. Saastamoinen, A. Kaijalainen, D. Porter, and P. Suikkanen: Mater. Charact., 2017, vol. 134, pp. 172–81.CrossRefGoogle Scholar
  58. 58.
    A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, and D.A. Porter: Mater. Sci. Eng. A, 2016, vol. 654, pp. 151–60.CrossRefGoogle Scholar
  59. 59.
    J. Steninger and A. Melander: Scand. J. Metall., 1982, vol. 11 (2), pp. 55–71.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Henri Järvinen
    • 1
  • Mari Honkanen
    • 1
  • Olli Oja
    • 2
  • Martti Järvenpää
    • 2
  • Pasi Peura
    • 1
  1. 1.Laboratory of Materials ScienceTampere University of TechnologyTampereFinland
  2. 2.SSAB Europe OyHämeenlinnaFinland

Personalised recommendations