Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 249–256 | Cite as

A Study on Sulfide Stress Cracking Susceptibility of GMA Girth Welds in X80 Grade Pipes

  • Yuji KisakaEmail author
  • Nick Senior
  • Adrian P. Gerlich
Article
  • 68 Downloads

Abstract

The present work evaluates the SSC susceptibility of linepipe steel weld metals produced with various microstructures consisting of different ratios of intragranular (acicular) ferrite and grain boundary ferrite. It is shown that weld metal with high fractions of intragranular ferrite and low grain boundary ferrite passed SSC tests even though their hardness exceeded 250 HV, the widely accepted guideline to prevent SSC fracture initiation. Using a novel combination of hydrogen microprinting combined with SEM and TEM electron microscopy analysis techniques, the intragranular ferrite grain boundaries are shown to provide key hydrogen trapping sites which consist of fine grains and finely dispersed nano-scale carbide precipitates. The presence of a high fraction of trapping sites is suggested to account for the good SSC resistance coupled with high hardness, while increased grain boundary ferrite led to rejection during SSC testing due to inferior fracture toughness associated with coarser grains.

Notes

Acknowledgments

The authors are grateful to CanmetMATERIALS, Nippon Steel & Sumikin Engineering Co., Ltd. (Japan), TransCanada Pipelines, and the Natural Sciences and Engineering Research Council (NSERC) of Canada for supporting this research. The EM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.

References

  1. 1.
    NACE MR0175/ISO 15156 Petroleum and Natural Gas Industries—Materials for Use in H2S—Containing Environments in Oil and Gas ProductionGoogle Scholar
  2. 2.
    European Federation of Corrosion Publication Number 16—Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil and Gas ProductionGoogle Scholar
  3. 3.
    B. Beidokhiti, P. He, A. H. Kokabi and A. Dolati, Material Science and Technology, 2017, vol. 33, no. 4, pp. 408-414.CrossRefGoogle Scholar
  4. 4.
    G.M. Omweg, G. S. Frankel, W.A. Bruce, J.E. Ramirez, and G. Koch, Corrosion, 2003, vol. 59, no.7, pp. 640-653.CrossRefGoogle Scholar
  5. 5.
    F. Huang, S. Liu, J. Liu, K. G. Zhang, and T. H. Xi, Materials Science & Engineering A, 2014, vol. 591, pp. 159-166CrossRefGoogle Scholar
  6. 6.
    L. Gan, F. Huang, X. Zhao, J. Liu, and F. F. Cheng. International Journal of Hydrogen Energy, 2017, doi:10.1016/j.ijhydene.2017.11.155.CrossRefGoogle Scholar
  7. 7.
    H. Asahi, and M. Ueno, ISIJ International, 1994, vol. 34, no.3, pp. 290-294.CrossRefGoogle Scholar
  8. 8.
    H. Asahi, and M. Ueno, and T Yonezawa, Corrosion, 1994, vol.50, no.7, pp. 537-545.CrossRefGoogle Scholar
  9. 9.
    T. Sourmail and G. Abington: International Corrosion Conference, NACE, 2007, paper 07104.Google Scholar
  10. 10.
    T. Omura, K. Kobayashi, and M. Ueda: International Corrosion Conference, NACE, 2009, paper 09102.Google Scholar
  11. 11.
    K. Kobayashi, T. Omura, N. Takahashi, I. Minato, and A. Yamamoto: Proceedings of the 8th International Pipeline Conference, IPC2010, 2010, paper 31106.Google Scholar
  12. 12.
    M. Al-Mansour, A.M.Alfantazi, and M. El-boujdaini, Materials and Design, 2009, vol.30, pp. 4088-4094CrossRefGoogle Scholar
  13. 13.
    B. Beidokhti, A. Dolati, and A.H. Koukabi, Materials Science and Engineering, 2009, 507A(1), 167-173.CrossRefGoogle Scholar
  14. 14.
    T. Kasuya, J. Kobayashi, S. Ohkita, and M. Fuji, Science and Technology of Welding and Joining, 1998 vol. 3, no.1, pp. 25-32.CrossRefGoogle Scholar
  15. 15.
    S.H. Wang, W.C. Luu, K.F. Ho, and J.K. Wu, Materials Chemistry and Physics, 2003, vol. 77, no. 2, pp. 447-454.CrossRefGoogle Scholar
  16. 16.
    ASTM G39: Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion test Specimens. ASTM, West Conshohocken, 2016Google Scholar
  17. 17.
    J. Ovejero-García, Journal of Materials Science, 1985, vol. 20, no. 7, pp. 2623-2629.CrossRefGoogle Scholar
  18. 18.
    K. Ichitani, M. Kanno, and S. Kuramoto, ISIJ international, 2003, vol. 43, no. 4, pp. 496-504.CrossRefGoogle Scholar
  19. 19.
    K. Ichitani, S. Kuramoto, and M. Kanno, Corrosion science, 2003, vol. 45, no. 6, pp. 1227-1234.CrossRefGoogle Scholar
  20. 20.
    K. Ichitani, and M. Kanno, Science and Technology of Advanced Materials, 2003, vol.4, no.6, pp. 545-551.CrossRefGoogle Scholar
  21. 21.
    M. Koyama, D. Yamasaki, T. Nagashima, C. C. Tasan, and K. Tsuzaki, Scripta Materialia, 2017, vol.129, pp48-51.CrossRefGoogle Scholar
  22. 22.
    M.C. Zhao, M. Liu, A. Atrens, Y.Y. Shan, and K. Yang, Materials Science and Engineering, 2008, 478A(1-2), 43-47.CrossRefGoogle Scholar
  23. 23.
    M. C. Zhao, and K. Yang, Scripta Materialia, 2005, vol.52, pp. 881-886.CrossRefGoogle Scholar
  24. 24.
    H.F. Lopez, R. Raghunath, J. L. Albarran, and L. Martinez, Metallurgical and Materials Transactions A, 1996, vol.27, pp. 3601-3611.CrossRefGoogle Scholar
  25. 25.
    The Japan Welding Engineering Society. http://www-it.jwes.or.jp/weld_simulator/en/cal4.jsp. Accessed 5 Aug 2018.
  26. 26.
    H. Asahi, Zairyo-to-Kankyo, 2000, 49(4), 201-208CrossRefGoogle Scholar
  27. 27.
    M. Hamada, Journal of the Japan Welding Society, 2011, 49(4), pp. 201-208 (Japanese)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada
  2. 2.CanmetMATERIALSHamiltonCanada

Personalised recommendations