Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 377–387 | Cite as

Phase Equilibria in the Fe-Mo-Nb System at 1100 °C and 1200 °C

  • Lei Zou
  • Zeting Du
  • Cuiping GuoEmail author
  • Changrong Li
  • Zhenmin DuEmail author
Article
  • 76 Downloads

Abstract

The isothermal sections of the Fe-Mo-Nb system at 1100 °C and 1200 °C were constructed using X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy. The experimental results indicate that the isothermal section at 1100 °C consists of six single-phase, nine two-phase, and four three-phase regions. At 1200 °C, there are six single-phase, eight two-phase, and three three-phase regions. The maximum solubilities of Mo in C14-Fe2Nb and μ-Fe7Nb6, and Nb in μ-Fe7Mo6 were determined to be about 26.97, 7.35, 19.74 at. pct at 1100 °C, respectively. The corresponding maximum solubilities of Mo at 1200 °C were determined to be about 25.08, 10.40, 23.85 at. pct at 1200 °C, respectively. No ternary compounds were observed at 1100 °C and 1200 °C.

Notes

Acknowledgments

The work was supported by the National Key R&D Program of China (Grant No. 2016YFB0700501) and National Natural Science Foundation of China (NSFC) (Grant No. 51671025).

References

  1. 1.
    S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, and Z. Lu: Nature, 2017, vol. 544, pp. 460–464.CrossRefGoogle Scholar
  2. 2.
    S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, and S.G. Jansto: Mater. Sci. Eng. A, 2008, vol. 478, pp. 26–37.CrossRefGoogle Scholar
  3. 3.
    V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider, R. Agamennone, W. Blum, Y. Wang, A. Scholz, C. Berger, J. Ehlers, and L. Singheiser: ISIJ Int., 2002, 42: 1505–1514.CrossRefGoogle Scholar
  4. 4.
    L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer: Intermetallics, 2005, vol. 13, pp. 1256–1262.CrossRefGoogle Scholar
  5. 5.
    Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, and M.P. Brady: Intermetallics, 2008, vol. 16(3), pp. 453–462.CrossRefGoogle Scholar
  6. 6.
    J.D. Bolton, and A.J. Gant: Powder Metall., 1996, vol. 39, pp. 27–35.CrossRefGoogle Scholar
  7. 7.
    J.D. Bolton, and A.J. Gant: J. Mater. Sci., 1998, vol. 33, pp. 939–953.CrossRefGoogle Scholar
  8. 8.
    S.G. Huang, J. Vleugels, H. Mohrbacher, and M. Woydt: Int. J. Refrac. Met. Hard Mater., 2017, vol. 66, pp. 188–197.CrossRefGoogle Scholar
  9. 9.
    P.B. Kemp, and R.M. German: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2187–2189.CrossRefGoogle Scholar
  10. 10.
    C.S. Hsu, K.H. Lin, and S.T. Lin: Int. J. Refrac. Met. Hard Mater., 2005, vol. 23, pp. 175–182.CrossRefGoogle Scholar
  11. 11.
    J. Houserová, J. Vřešťál, and M. Šob: Calphad, 2005, vol. 29, pp. 133–139.CrossRefGoogle Scholar
  12. 12.
    W.P. Sykes: Trans. ASST., 1926, vol. 10, pp. 839–871.Google Scholar
  13. 13.
    W.P. Sykes: Trans. ASST., 1929, vol. 16, pp. 358–369.Google Scholar
  14. 14.
    J.L. Ham, and D. Mich: Trans. Am. Soc. Mechanic. Eng., 1951, vol. 73, pp. 723–732.Google Scholar
  15. 15.
    W.S. Gibson, J.R. Lee, and W. Hume-Rothery: J. Iron Steel Inst., 1961, vol. 198, pp. 64–66.Google Scholar
  16. 16.
    A.K. Sinha, R.A. Buckley, and W. Hume-Rothery: J. Iron Steel Inst., 1967, vol. 205, pp. 191–195.Google Scholar
  17. 17.
    J.P. Pivot, A.V. Craeynest, and D. Calais: J. Nucl. Mater., 1969, vol. 31, pp. 342–344.CrossRefGoogle Scholar
  18. 18.
    C.P. Heijwegen, and G.D. Rieck: J. Less-Common Met., 1974, vol. 37, pp. 115–121.CrossRefGoogle Scholar
  19. 19.
    Y. Ueshima, E. Ichise, and T. Mori: J. Iron Steel Inst., 1979, vol. 65, pp. S684.Google Scholar
  20. 20.
    E. Ichise, T. Maruo, H. Sasho, Y. Ueshima, and T. Mori: J. Iron Steel Inst., 1980, vol. 66, pp. 1075–1083.CrossRefGoogle Scholar
  21. 21.
    L. Brewer, and R.H. Lamoreaux: At. Energy Rev. Part II, 1980, vol. 7, pp. 244–249.Google Scholar
  22. 22.
    T. Takayama, M.Y. Wey, and T. Nishizawa: Trans. Jpn Inst. Met., 1981, vol. 22, pp. 315–325.CrossRefGoogle Scholar
  23. 23.
    A.F. Guillermet: Bull Alloy Phase Diagr., 1982, vol. 3, pp. 359–367.CrossRefGoogle Scholar
  24. 24.
    P. Gustafson: Z. MetaIlkd., 1988, vol. 79, pp. 388–396.Google Scholar
  25. 25.
    V.B. Rajkumar, and K.C.H. Kumar: J. Alloys Compd., 2014, vol. 611, pp. 303–312.CrossRefGoogle Scholar
  26. 26.
    N.M. Voronov: Izv. Akad. Nauk SSSR Khim., 1937, vol. 1, pp. 1369–1379.Google Scholar
  27. 27.
    H. Eggers, and W. Peter: Mitt. Kaiser-Wilhelm Inst. Eisenforsch., 1938, vol. 20, pp. 199–203.Google Scholar
  28. 28.
    R. Genders: J. Iron Steel Inst., 1939, vol. 140, pp. 29–37.Google Scholar
  29. 29.
    A. Raman: Proc. Indian Acad. Sci. A, 1967, vol. 65, pp. 256–264.CrossRefGoogle Scholar
  30. 30.
    W.A. Fischer, K. Lorenz, H. Fabritius, and D. Schlegel: Arch. Eisenhuettenw., 1970, vol. 41, pp. 489–498.Google Scholar
  31. 31.
    H.J. Goldschmidt: J. Iron Steel Inst., 1960, vol. 194, pp. 169–180.Google Scholar
  32. 32.
    F.X. Lu, and K.H. Jack: J. Less-Common Met., 1985, vol. 114, pp. 123–127.CrossRefGoogle Scholar
  33. 33.
    B. Zelaya, S. Gama, C.A. Ribeiro, and G. Effenberg: Z. Metallkd., 1993, vol. 84, pp. 160–164.Google Scholar
  34. 34.
    M. Takeyama, N. Gomi, S. Morita, and T. Matsuo: Mater. Res. Soc. Symp. Proc., 2005, vol. 842, pp. 461–466.Google Scholar
  35. 35.
    S.K. Balam, and A. Paul: Metall. Mat. Trans. A, 2010, vol. 41A, pp. 2175–2179.CrossRefGoogle Scholar
  36. 36.
    S. Voß, M. Palm, F. Stein, and D. Raabe: J. Phase Equilib. Diffus., 2011, vol. 32, pp. 97–104.CrossRefGoogle Scholar
  37. 37.
    A. Jacob, C. Schmetterer, A. Khvan, A. Kondrtiev, D.Ivanov, and B. Hallstedt: Calphad, 2016, vol. 54, pp. 1–15.CrossRefGoogle Scholar
  38. 38.
    E. Rudy, C.E. Brukl, and S. Windisch: Trans. Metall. Soc. Aime, 1967, vol. 239, pp. 1796–1808.Google Scholar
  39. 39.
    Y.A. Kocherzhinskij, and V.I. Vasilenko: Dokl. Akad. Nauk SSSR., 1981, vol. 257, pp. 371–373.Google Scholar
  40. 40.
    W. Xiong, Y. Du, Y. Liu, B.Y. Huang, H.H. Xu, H.L.Chen, and Z. Pan: Calphad, 2004, vol. 28, pp. 133–140.CrossRefGoogle Scholar
  41. 41.
    S.V. Smirnova, L.L. Meshkov, and O.N. Kosolapova: Moscow Univ. Chem. Bull., 1987, vol. 42, pp. 84–87.Google Scholar
  42. 42.
    K.C. Harikumar, and V. Raghavan: J. Alloy Phase Diagrams, 1989, vol. 5, pp. 77–96.Google Scholar
  43. 43.
    P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, Materials Park, Ohio: ASM International, 1995, pp. 10458–10464.Google Scholar
  44. 44.
    O. Prymak, and F. Stein: J. Alloy. Compd., 2012, vol. 513, pp. 378–386.CrossRefGoogle Scholar
  45. 45.
    F. Stein: Mater. Res. Soc. Symp. Proc. 2011, vol. 1295, pp. 299–310.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations