Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 151–160 | Cite as

Determination of Yield Stress in a Duplex Steel with α + γ Lamellar Structure

  • Yoon-Uk Heo
  • Joo-Hee Kang
  • Nam Hoe Heo
  • Sung-Joon Kim


Yield stress σy is evaluated in a duplex steel with α + γ lamellar structure by calculating the stress for the propagation of pile-up dislocations in one phase into another phase. Effective grain size of a lamella is determined to calculate the contribution of each boundary of a lamella to dislocation pile-up. Comparison of stresses required to drive α-to-γ and γ-to-α propagations of pile-up dislocations suggests that α + γ lamellar structure yields by propagation of pile-up dislocations in α lamella to γ lamella. σy of α + γ lamellar structure is calculated as the sum of friction stress σoα of α and the stress component Δσγ for yielding of γ lamella at the effective grain size dα,eff of α lamella. The calculated results explain better to the experimental σy than do results calculated using rule of mixture.



This work was partially supported by the Technology Development Project (Project numbers: 4.0014548) from POSCO. J.-H. Kang was supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK5570).


  1. 1.
    S. Gao, A. Shibata, M. Chen, N. Park and N. Tsuji: Mater. Trans., 2014, vol. 55, pp. 69-72.CrossRefGoogle Scholar
  2. 2.
    W. C. Leslie: The physical metallurgy of steels, 1st Ed., Hemisphere publishing corporation, New York, 1981, pp. 2-67.Google Scholar
  3. 3.
    G. Dini, A. Najafizadeh, R. Ueji, S. M. Monir-Vaghefi: Mater. Des., 2010, vol. 31, pp. 3395-402.CrossRefGoogle Scholar
  4. 4.
    Z. Shen, R. H. Wagoner, and W. A. T. Clark: Scripta Metall., 1986, vol. 20, pp. 921-6.CrossRefGoogle Scholar
  5. 5.
    S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama: Mater. Trans., 2014, vol. 55, pp. 28-34.CrossRefGoogle Scholar
  6. 6.
    M. Rashid: Annu. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.CrossRefGoogle Scholar
  7. 7.
    P. Movahed, S. Kolahgar, S. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRefGoogle Scholar
  8. 8.
    Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng. A, 1995, vol. 190, pp. 55–64.CrossRefGoogle Scholar
  9. 9.
    R. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671–9.CrossRefGoogle Scholar
  10. 10.
    L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1979, vol. 10, pp. 259–61.CrossRefGoogle Scholar
  11. 11.
    U. Liedl, S. Traint, and E. Werner: Comput. Mater. Sci., 2002, vol. 25, pp. 122–28.CrossRefGoogle Scholar
  12. 12.
    N. Balliger and T. Gladman: Metall. Sci., 1981, vol. 15, pp. 95–108.CrossRefGoogle Scholar
  13. 13.
    G. Tither and M. Lavite: J. Metall., 1975, vol. 27, pp. 15–23.Google Scholar
  14. 14.
    N. Hirota, F. Yin, T. Azuma, and T. Inoue: Sci. Techn. Adv. Mater., 2010, vol. 11, pp. 025004.CrossRefGoogle Scholar
  15. 15.
    B. Cullity and S. Stock: Elements of X–ray diffraction, 3rd ed., Prentice-Hall, New Jersey, 2001, pp. 363-84.Google Scholar
  16. 16.
    Y. Guo, Z. Li, C. Yao, K. Zhang, F. Lu, K. Feng, J. Huang, M. Wang, and Y. Wu: Mater. Des., 2014, vol. 63, pp. 100–8.CrossRefGoogle Scholar
  17. 17.
    D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.Google Scholar
  18. 18.
    R. F. Egerton: Electron energy-loss spectroscopy in the electron microscope, Second ed. Plenum press, New York, 1996.CrossRefGoogle Scholar
  19. 19.
    H. M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65-71.CrossRefGoogle Scholar
  20. 20.
    Y.-U. Heo, D.-W. Suh, and H.-C. Lee: Acta Mater., 2014, vol. 77, pp. 236–47.CrossRefGoogle Scholar
  21. 21.
    L. E. Murr: Electron optical applications in materials science, McGraw-Hill, New York, 1970.Google Scholar
  22. 22.
    J.R. Yang and H.K.D.H. Bhadeshia: Weld. Res. Suppl., 1990, vol. 69, pp. 305s-7s.Google Scholar
  23. 23.
    A Saeed–Akbari (2011) Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels. Shaker Verlag, Aachen.Google Scholar
  24. 24.
    A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1688-704.CrossRefGoogle Scholar
  25. 25.
    A. Saeed-Akbari, A. Schwedt, and W. Bleck: Scripta Mater., 2012, vol. 66, pp. 1024-29.CrossRefGoogle Scholar
  26. 26.
    Y.-U. Heo, D. H. Kim, N.H. Heo, C. W. Hong, and S.-J. Kim: Met. Mater. Trans. A, 2016, vol. 47A, pp. 6004-16.CrossRefGoogle Scholar
  27. 27.
    H. Conrad, S. Feuerstein, and L. Rice: Mater. Sci. Eng., 1967, vol. 2, pp. 157–68.CrossRefGoogle Scholar
  28. 28.
    D.T. Narutani and J. Takamura: Acta Metall., 1991, vol. 39, pp. 2037-49.CrossRefGoogle Scholar
  29. 29.
    M. Etou, S. Fukushima, T. Sasaki, Y. Haraguchi, K. Miyata, M. Wakita, T. Tomida, N. Imai, M. Yoshida, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1142–7.CrossRefGoogle Scholar
  30. 30.
    M.J. Roberts: Metall. Trans., 1970, vol. 1, pp. 3287-94.Google Scholar
  31. 31.
    S. Lee, W. Woo, and B. C. De Cooman: Met. Mater. Trans. A, 2016, vol. 47A, pp. 2125-40.CrossRefGoogle Scholar
  32. 32.
    Y. Xiaoyun, C. Liqing, Z. Yang, D. Hongshuang, and Z. Fuxian: Proc. Eng., 2014, vol. 81, pp. 143-8.CrossRefGoogle Scholar
  33. 33.
    S. Takaki, K. Kawasaki, Y. Kimura: J. Mater. Proc. Techn., 2001, vol. 117, pp. 359-63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yoon-Uk Heo
    • 1
  • Joo-Hee Kang
    • 2
  • Nam Hoe Heo
    • 1
  • Sung-Joon Kim
    • 1
  1. 1.Graduate Institute for Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Korea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations