Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 142–150 | Cite as

Assessment of Shell Strength During Solidification in the Mold Cracking Simulator (MCS) Test

  • Begoña SantillanaEmail author
  • Vamsi Paruchuri
  • Viktor Kripak
  • Ulrich Prahl
  • Carel ten Horn
Article
  • 84 Downloads

Abstract

To properly model the cracking susceptibility during solidification under continuous casting conditions, it is essential to have accurate data. Such data for the mechanical properties of steel during solidification are scarce if not non-existent. An experimental tool called the Mold Cracking Simulator (MCS) has been used to simulate the initial shell formation under continuous casting conditions. As part of the test, the shell is mechanically subjected to deformation. A mathematical model has been developed to translate the force and elongation measured during the MCS trials into stress–strain components. To test the model and validate the assumptions, two steel grades were tested, a peritectic steel grade and a higher-alloyed grade. The results show that the reproducibility of the test is very good and the stress–strain curves are consistent with the steel composition. Moreover, the metallographic and fractographic analysis of the deformed MCS samples shows that the microstructure is comparable to that of a continuously cast product and the cracks generated are interdendritic, i.e., hot tears.

List of Symbols

TS

Solidus temperature (°C)

TL

Liquidus temperature (°C)

L

Length of the wedge (19.9 mm)

dmold

Diameter of the mold (69.36 mm)

θ

Angle of the curved inclined surface

R

Radius of solidified shell in (mm)

t

Thickness of the solidified shell in (mm)

FN

Normal force perpendicular to the incline plane (N)

Fw

Load transmitted by wedge on to the shell (N)

FS

Sliding force along the inclined plane (N)

F

Difference between forces measured during hot test and cold test (N)

dy

Incremental displacement in positive longitudinal direction, i.e., from A to AI

dx

Incremental displacement in radial direction from B to BI (refer Figure 4)

\( \dot{\varepsilon } \)

Strain rate, change in strain of a material with respect to time (1/s)

σp

Peak stress (MPa)

\( \dot{\varepsilon }_{p} \)

Strain at Peak stress (pct)

εθθ, εrr, and εzz

Normal strains measured along the radial, tangential, and axial directions, respectively (elongation/shortening of material per unit length)

σθθ, σrr, and σzz

Normal stress along the radial, tangential, and axial directions, respectively (force per unit area)

τθθ, τθz, and τzr

Shear stress, components of stress coplanar with a material cross section (force per unit area)

References

  1. 1.
    K.O. Yu, ed., Modelling for casting and solidification processing, vol. 1. New York: Marcel Dekker, 2009.Google Scholar
  2. 2.
    [2] W. T. J. Lankford, Metall. Trans., vol. 3, 1972, pp. 1331–1356.CrossRefGoogle Scholar
  3. 3.
    [3] H. Mizukami, A. Yamanaka, and T. Watanabe, ISIJ Int., vol. 42, no. 9, 2002, pp. 964–973.CrossRefGoogle Scholar
  4. 4.
    [4] T. Nakagawa, T. Umeda, J. Murata, and Y. Kamimura, ISIJ Int., vol. 35, No. 6, 1995, pp. 723–729.CrossRefGoogle Scholar
  5. 5.
    [5] B. Mintz, J. R. Wilcox, and D. N. Crowther, Mater. Sci. Technol., vol. 2, no. 6, 1986, pp. 589–594.CrossRefGoogle Scholar
  6. 6.
    [6] C. Bernhard, H. Hiebler, and M. M. Wolf, ISIJ Int., vol. 36, 1996, pp. 163–166.CrossRefGoogle Scholar
  7. 7.
    [7] H. Presslinger et al., ISIJ Int., vol. 46, no. 12, pp. 1845–1851, 2006.CrossRefGoogle Scholar
  8. 8.
    H. Yasunaka, T. Mori, H. Nakata, F. Kamei, and S. Harada: Steelmak. Process., 1986 (69), pp. 497–502.Google Scholar
  9. 9.
    H. G. SUZUKI, S. Nishimura, and Y. NAKAMURA, Trans. iron steel Inst. Japan, vol. 24, no. 1, 1984, pp. 54–59.CrossRefGoogle Scholar
  10. 10.
    10.B. Rogberg: Scand. J. Metall., 1983, vol 12, pp. 51–66.Google Scholar
  11. 11.
    K. Hansson: Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2001.Google Scholar
  12. 12.
    T.T. Natarajan, T.J. Piccone, K.D. Powers, C.C. Snyder, A. Badri, and A.W. Cramb: AISTech2004, 2004, vol. II, pp. 1013–25.Google Scholar
  13. 13.
    P. Kozlowski, Thomas B.G., J. Azzi, and Wang H.: Metall. Trans. A, vol. 23A, 1992, pp. 903–18.CrossRefGoogle Scholar
  14. 14.
    H. Zhang, Y. Wang, W. Zhang: Metall. Mater. Trans .B, vol. 47B, 2016, pp. 2244–2252.CrossRefGoogle Scholar
  15. 15.
    [15] P. Ackermann, W. Kurz, and W. Heinemann, Mater. Sci. Eng., vol. 75, no. 1, 1985, pp. 79–86.CrossRefGoogle Scholar
  16. 16.
    C. Bernhard, R. Pierer, and S. Michelic: AISTech, 2010, pp. 977–86.Google Scholar
  17. 17.
    B. Santillana and M. Cruijff: WO patent request, 2011.Google Scholar
  18. 18.
    [18] G. E.Dieter, Mechanical Metallurgy, vol. SI metric. McGraw-Hill Book Co. UK LTD, 1998.Google Scholar
  19. 19.
    B. Santillana, B.G. Thomas, A. Hamoen, L.C. Hibbeler, A. Kamperman, and W. Van Der Knoop, AISTech - Iron and Steel Technology Conference Proceedings, 2007, vol. 2, CD-Rom.Google Scholar
  20. 20.
    B.G. Thomas, A. Moitra, and H. Zhu, Miner. Met. Mater. Soc. 1995, pp. 240–49.Google Scholar
  21. 21.
    [21] V. Vullo, Circular cylinders and pressure vessels. Stress Analysis and Design, Springer s. Springer-Verlag - Berlin, 2014.CrossRefGoogle Scholar
  22. 22.
    B. Santillana, B.G. Thomas, G. Botman, and E. Dekker: in 7th European Continuous Casting Conference, 2012.Google Scholar
  23. 23.
    23.Suzuki T, Yu CH, Emi T (1997) ISIJ Int. 37(4), 375–382.CrossRefGoogle Scholar
  24. 24.
    C. Bernhard, H. Hiebler, and M.M. Wolf: La Rev. Metallurgie, 2000, pp. 333–43.Google Scholar
  25. 25.
    [25] L. Arnberg and R. H. Mathiesen, JOM, vol. 59, no. 8, 2007, pp. 20–26.CrossRefGoogle Scholar
  26. 26.
    B. Santillana: Ph.D. Thesis TU Delft, 2013.Google Scholar
  27. 27.
    [27] M. Easton and D. Stjohn, Metall. Mater. Trans. A, vol. 36, no. 7, 2005, pp. 1911–1920.CrossRefGoogle Scholar
  28. 28.
    [28] Y. Meng and B. G. Thomas, Metall. Mater. Trans. B, vol 34B, 2003, pp. 707-725.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Begoña Santillana
    • 1
    Email author
  • Vamsi Paruchuri
    • 2
    • 3
  • Viktor Kripak
    • 4
  • Ulrich Prahl
    • 4
    • 5
  • Carel ten Horn
    • 6
  1. 1.Steelmaking & Casting Group, Ironmaking, Steelmaking & Casting Department, Tata Steel, Research & DevelopmentIJmuiden Technology CentreIJmuidenThe Netherlands
  2. 2.RWTH Aachen UniversityAachenGermany
  3. 3.Department Materials Science and EngineeringTU Delft/Faculteit 3mEDelftThe Netherlands
  4. 4.Institut für Eisenhüttenkunde (IEHK)RWTH AachenAachenGermany
  5. 5.Technische Universität Bergakademie Freiberg, Institut für MetallformungFreibergGermany
  6. 6.Plasticity & Tribology Group, Application & Engineering Department, Tata Steel, Research & DevelopmentIJmuiden Technology CentreIJmuidenThe Netherlands

Personalised recommendations