Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 468–479 | Cite as

Electrochemical Behavior and Computational Analysis of Phenylephrine for Corrosion Inhibition of Aluminum in Acidic Medium

  • Sumayah Bashir
  • Vivek Sharma
  • Gurmeet Singh
  • Hassane Lgaz
  • Rachid Salghi
  • Ambrish Singh
  • Ashish Kumar
Article
  • 71 Downloads

Abstract

The anticorrosion property of phenylephrine on aluminum in 0.5 M HCl is successfully reported for the first time. The experimental techniques employed included weight loss, polarization, electrochemical impedance spectroscopy (EIS), and computational methods. The results show that the addition/adsorption/application of phenylephrine on the metal surface leads to significant reduction in its corrosion rate (CR). It was found that phenylephrine shows the maximum of 97 pct inhibition at 4000 ppm at 298 K. The results from potentiodynamic polarization revealed that phenylephrine acts as a mixed type of inhibitor. The mode of adsorption of the inhibitor on the aluminum surface followed Langmuir adsorption isotherm. Quantum chemical calculations and molecular dynamic (MD) simulations were adopted to elucidate the inhibition mechanism of the inhibitor on the surface of the metal. Surface analysis was done using scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies.

References

  1. 1.
    B. Xu, Y. Ji, X. Zhang, X. Jin, W. Yang, and Y. Chen: J. Taiwan Inst. Chem. Eng., 2016, vol. 59, pp. 526–35.CrossRefGoogle Scholar
  2. 2.
    N.A. Odewunmi, S.A. Umoren, Z.M. Gasem, S.A. Ganiyu, and Q. Muhammad: J. Taiwan Inst. Chem. Eng., 2015, vol. 51, pp. 177–85.CrossRefGoogle Scholar
  3. 3.
    M. Shahraki, M. Dehdab, and S. Elmi: J. Taiwan Inst. Chem. Eng., 2016, vol. 61, pp. 277–85.Google Scholar
  4. 4.
    I. Glasgow, A. Rostron, G. Thomson: Corros. Sci., 1966, 6, 469–82.CrossRefGoogle Scholar
  5. 5.
    S. Lyon: Mater. Sci., 2004, 427, 406.Google Scholar
  6. 6.
    C.B. Verma, M.A. Quraishi, and A. Singh: J. Taiwan Inst. Chem. Eng., 2015, vol. 49, pp. 229–39.CrossRefGoogle Scholar
  7. 7.
    K. Zhang, W. Yang, B. Xu, Y. Liu, X. Yin, and Y. Chen: J. Taiwan Inst. Chem. Eng., 2015, vol. 57, pp. 167–74.CrossRefGoogle Scholar
  8. 8.
    C. Verma, M.A. Quraishi, and A. Singh: J. Taiwan Inst. Chem. Eng., 2016, vol. 58, pp. 127–40.CrossRefGoogle Scholar
  9. 9.
    W. Guo, S. Chen, Y. Feng, and C. Yang: J. Phys. Chem. C, 2007, vol. 111, pp. 3109–15.CrossRefGoogle Scholar
  10. 10.
    P. Cao, J. Yao, J. Zheng, R. Gu, and Z.-Q. Tian: Langmuir, 2002, vol. 18, pp. 100–04.CrossRefGoogle Scholar
  11. 11.
    N. Hackerman: Langmuir, 1987, vol. 3, pp. 922–24.CrossRefGoogle Scholar
  12. 12.
    D. Singh, M. Singh, R. Chaudhary, and C. Agarwal: Electrochim. Acta, 1981, vol. 26, pp. 1051–56.CrossRefGoogle Scholar
  13. 13.
    K.T. Carron, G. Xue, and M.L. Lewis: Langmuir, 1991, vol. 7, pp. 2–4.CrossRefGoogle Scholar
  14. 14.
    A. Popova, S. Raicheva, E. Sokolova, and M. Christov: Langmuir, 1996, vol. 12, pp. 2083–89.CrossRefGoogle Scholar
  15. 15.
    M. Singh, R. Rastogi, B. Upadhyay, and M. Yadav: Mater. Chem. Phys., 2003, vol. 80, pp. 283–93.CrossRefGoogle Scholar
  16. 16.
    K. Babic-Samardzija, C. Lupu, N. Hackerman, and A.R. Barron: J. Mater. Chem., 2005, vol. 15, pp. 1908–16.CrossRefGoogle Scholar
  17. 17.
    D. Turcio-Ortega, T. Pandiyan, J. Cruz, and E. Garcia-Ochoa: J. Phys. Chem. C, 2007, vol. 111, pp. 9853–66.CrossRefGoogle Scholar
  18. 18.
    E. Oguzie, S. Wang, Y. Li, and F. Wang: J. Phys. Chem. C, 2009, vol. 113, pp. 8420–29.CrossRefGoogle Scholar
  19. 19.
    G. Gece: Corros. Sci., 2011, vol. 53, pp. 3873–98.CrossRefGoogle Scholar
  20. 20.
    K. Ashish and B. Sumayah: Russ. J. Appl. Chem., 2016, vol. 89, pp. 1158–63.CrossRefGoogle Scholar
  21. 21.
    A. Adejoro, F.K. Ojo, and S.K. Obafemi: Chem. J. Taibah Univ. Sci., 2015, vol. 9, pp. 196–202.CrossRefGoogle Scholar
  22. 22.
    N. Hebbar, B.M. Parveen, B.M. Prassana, T.V. Venkatesha, S.B. Hamid: Proc. Mater. Sci., 2014, 5, 712.CrossRefGoogle Scholar
  23. 23.
    A.S. Fouda, M.N. Haddad, Y.M. Abdallah: Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 7073–84.Google Scholar
  24. 24.
    G. Zhang, L. Yin, S. Zhang, L. Xiao: Adv. Mater. Res., 2011, 196, 8–15.Google Scholar
  25. 25.
    S.K. Shukla, A.K. Singh, I. Ahamad, M.A. Quraishi: Mater. Lett., 2009, 63, 819–22.CrossRefGoogle Scholar
  26. 26.
    I. Ahamad, R. Prasad, M.A. Quraishi: Corr. Sci., 2010, 52, 3033–41.CrossRefGoogle Scholar
  27. 27.
    O. Olivares, V. Likhanova, N. Neol, CP Agustin, I.V. Lijanova, A.E. Morales, C. Lopez: Int. J. Electrochem. Sci., 2013, 8, 735–52.Google Scholar
  28. 28.
    T. Jebakumar Immanuel Edison and M.G. Sethuraman: ISRN Electrochem., 2013, vol. 2013, art. no. 256086.  https://doi.org/10.1155/2013/256086.
  29. 29.
    J. Ishwara Bhat and V.D.P. Alva: Int. J. Electrochem. 2011, vol. 2011, art. no. 157576.  https://doi.org/10.4061/2011/157576.
  30. 30.
    S.B. Ade, N.V. Shitole, and S.M. Lonkar: J. Chem. Pharm. Res., 2014, 6, 1865–72.Google Scholar
  31. 31.
    P. Singh, D. S. Chauhan, K. Srivastava, V. Srivastava, and M.A. Quraishi: Int. J. Ind. Chem., 2017, 8, 363–71.CrossRefGoogle Scholar
  32. 32.
    I.A. Akpan and N.-A.O. Offiong, Int. J. Corr. 2013, vol. 2013, art. no. 301689.  https://doi.org/10.1155/2013/301689.
  33. 33.
    I. Reza, A.R. Saleemi, and S. Naveed: Pol. J. Chem. Technol., 2011, 13, 67–71.CrossRefGoogle Scholar
  34. 34.
    M. Abdallah: Corr. Sci., 2002, vol. 44, pp. 717–28.CrossRefGoogle Scholar
  35. 35.
    I. Ahamad and M.A. Quraishi: Corr. Sci., 2010, vol. 52, pp. 651–56.CrossRefGoogle Scholar
  36. 36.
    Nicolae Vaszilcsin, Valentin Ordodi, and Alexandra Borza: Int. J. Pharm., 2012, vol. 431, pp. 241–44.CrossRefGoogle Scholar
  37. 37.
    G. D.Thorat, D. M Nagrik, and S. S. Patil: IOSR J. Appl. Chem., 2015, vol. 8, pp. 101–09.Google Scholar
  38. 38.
    K. Bhara and G. Singh: Appl. Surf. Sci., 2006, vol. 253, pp. 846–53.CrossRefGoogle Scholar
  39. 39.
    I.A. Adejoroa, F.K. Ojoa, and S.K. Obafemiba: J. Taibah Univ. Sci., 2015, vol. 9, pp. 196–202.CrossRefGoogle Scholar
  40. 40.
    S. H. Kumar and S. Karthikeyan: J. Mater. Environ. Sci., 2012, 5, 915–25.Google Scholar
  41. 41.
    A. Kumar and S. Bashir: Int. J. ChemTech. Res., 2015, vol. 8, pp. 391–96.Google Scholar
  42. 42.
    Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, and S. Meghdadi: Corros. Sci., 2017, vol. 114, pp. 133–45.CrossRefGoogle Scholar
  43. 43.
    Materials Studio, Revision 6.0, Accelrys Inc., San Diego, CA, 2013.Google Scholar
  44. 44.
    B. Delley: J. Chem. Phys., 2000, vol. 113, pp. 7756–64.CrossRefGoogle Scholar
  45. 45.
    B. Delley: J. Phys. Chem. A, 2006, vol. 110, pp. 13632–39.CrossRefGoogle Scholar
  46. 46.
    R.S. Mulliken: Int. J. Chem. Phys., 1955, vol. 23, pp. 1833–40.CrossRefGoogle Scholar
  47. 47.
    M. Gholami, I. Danaee, M.H. Maddahy, and M. RashvandAvei: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 14875–89.CrossRefGoogle Scholar
  48. 48.
    R.G. Pearson: Inorg. Chem., 1988, vol. 27, pp. 734–40.CrossRefGoogle Scholar
  49. 49.
    V. Sastri and J. Perumareddi: Corrosion, 1997, vol. 53, pp. 617–22.CrossRefGoogle Scholar
  50. 50.
    S. Martinez: Mater. Chem Phys., 2003, vol. 77, pp. 97–102.CrossRefGoogle Scholar
  51. 51.
    Z. Cao, Y. Tang, H. Cang, J. Xu, G. Lu, and W. Jing: Corros. Sci., 2014, vol. 83, pp. 292–98.CrossRefGoogle Scholar
  52. 52.
    A. Kokalj: Chem Phys., 2012, vol. 393, pp. 1–12.CrossRefGoogle Scholar
  53. 53.
    Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, and M. Ebn Touhami: Corros. Sci., 2013, vol. 68, pp. 223–30.CrossRefGoogle Scholar
  54. 54.
    H. Mi, G. Xiao, and X. Chen: Comput. Theor. Chem., 2015, vol. 1072, pp. 7–14.CrossRefGoogle Scholar
  55. 55.
    S.K. Saha, P. Ghosh, A. Hens, N.C. Murmu, and P. Banerjee: Phys. E Low-Dimens. Syst. Nanostruct., 2015, vol. 66, pp. 332–41.CrossRefGoogle Scholar
  56. 56.
    H. Sun: J. Phys. Chem. B, 1998, vol. 102, pp. 7338–7364.CrossRefGoogle Scholar
  57. 57.
    H. Lgaz, R. Salghi, B. K. Subrahmanya, A. Chaouiki, and S. Jodeh: J. Mol. Liq., 2017, 244, 154–68.CrossRefGoogle Scholar
  58. 58.
    N. Negm, M. Zaki, M. Said, and S. Morsy: Corr. Sci., 2011, vol. 53, pp. 4233–40.CrossRefGoogle Scholar
  59. 59.
    R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi et al.: J. Mol. Liq., 2017, vol. 243, pp. 439–50.CrossRefGoogle Scholar
  60. 60.
    S. Ghareba and S. Omanovic: Corros. Sci., 2010, vol. 52, pp. 2104–13.CrossRefGoogle Scholar
  61. 61.
    Y.A. Albrimi, A.A. Addi, J. Douch, R. Souto, and M. Hamdani: Corros. Sci., 2015, vol. 90, pp. 522–28.CrossRefGoogle Scholar
  62. 62.
    R. Yildiz, A. Doner, T. Dogan, and I. Dehri: Corros. Sci., 2014, vol. 82, pp. 125–32.CrossRefGoogle Scholar
  63. 63.
    V. Srivastava, J. Haque, C. Verma, P. Singh, H. Lgaz, R. Salghi et al.: J. Mol. Liq., 2017, vol. 244, pp. 340–52.CrossRefGoogle Scholar
  64. 64.
    X. Li, S. Deng, and H. Fu: Corros. Sci., 2011, vol. 53, pp. 302–09.CrossRefGoogle Scholar
  65. 65.
    R. Salghi, S. Jodeh, E.E. Ebenso, H. Lgaz, D. B. Hmamou, M. Belkhaouda et al.: Int. J. Electrochem. Sci., 2017, 12, 3283–95.CrossRefGoogle Scholar
  66. 66.
    P. Roy, P. Karfa, U. Adhikari, and D. Sukul: Corros. Sci., 2014, vol. 88, pp. 246–53.CrossRefGoogle Scholar
  67. 67.
    P. Mourya, S. Banerjee, and M. Singh: Corros. Sci., 2014, vol. 85, pp. 352–63.CrossRefGoogle Scholar
  68. 68.
    P. Singh, E.E. Ebenso, L.O. Olasunkanmi, I. Obot, and M. Quraishi: J. Phys. Chem. C, 2016, vol. 120, pp. 3408–19.CrossRefGoogle Scholar
  69. 69.
    L.O. Olasunkanmi, I.B. Obot, M.M. Kabanda, and E.E. Ebenso: J. Phys. Chem. C, 2015, vol. 119, pp. 16004–19.CrossRefGoogle Scholar
  70. 70.
    B.D. Mert, A.O. Yuce, and G. Kardas: Corros. Sci., 2014, vol. 85, pp. 287–95.CrossRefGoogle Scholar
  71. 71.
    H. Lgaz, B. K. Subrahmanya, R. Salghi, S. Jodeh, M. Algarra et al.: J. Mol. Liq., 2017, 238, 71–83.CrossRefGoogle Scholar
  72. 72.
    L.O. Olasunkanmi, I.B. Obot, and E.E. Ebenso: RSC Adv., 2016, vol. 6, pp. 86782–97.CrossRefGoogle Scholar
  73. 73.
    A. Singh, K.R. Ansari, J. Haque, P. Dohare, H. Lgaz, R. Salghi et al.: J. Taiwan Inst. Chem. Eng., 2018, vol. 82, pp. 233–51.CrossRefGoogle Scholar
  74. 74.
    H. Lgaz, R. Salghi, S. Jodeh, and B. Hammouti: J. Mol. Liq., 2017, vol. 225, pp. 71–80.CrossRefGoogle Scholar
  75. 75.
    Y. Yan, X. Wang, Y. Zhang, P. Wang: Mol. Simul., 2013, 39, 1034–41.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Sumayah Bashir
    • 1
  • Vivek Sharma
    • 1
  • Gurmeet Singh
    • 2
  • Hassane Lgaz
    • 3
  • Rachid Salghi
    • 4
  • Ambrish Singh
    • 5
  • Ashish Kumar
    • 1
    • 6
  1. 1.Department Of Chemistry, Faculty of Technology and SciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of ChemistryUniversity of DelhiDelhiIndia
  3. 3.Department of Applied Bioscience, College of Life & Environment ScienceKonkuk UniversitySeoulSouth Korea
  4. 4.Laboratory of Applied Chemistry and EnvironmentENSA, IbnZohr UniversityAgadirMorocco
  5. 5.School of Material Science and EngineeringSouthwest Petroluem UniversityChengduChina
  6. 6.Department of Chemistry, School of Civil EngineeringLovely Professional UniversityPhagwaraIndia

Personalised recommendations