Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 118–131 | Cite as

Strain-Path Dependence of \( \{ 10\bar{1}2\} \) Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model

  • Lingyu Zhao
  • Xiaoqian Guo
  • Adrien ChapuisEmail author
  • Yunchang XinEmail author
  • Qing Liu
  • Peidong Wu
Article
  • 175 Downloads

Abstract

In magnesium and its alloys, \( \{ 10\bar{1}2\} \) tension twinning is an important deformation mode and is highly dependent on the strain path. Although the \( \{ 10\bar{1}2\} \)-twinning behavior has been extensively modeled, the effects of twinning models on the predicted results has seldom been compared. In this study, two typical twinning models, predominant twin reorientation (PTR) and twinning-detwinning (TDT), were chosen to simulate the \( \{ 10\bar{1}2\} \)twinning-predominant deformations of a Mg alloy AZ31 rolled plate, in compression along the transverse direction (TD-c) and in tension along the normal direction (ND-t), and the results were compared with experimental data. In addition to the strain-stress curves in the ND-t and TD-c, six other flow curves were used to determine the material-parameter inputs for the simulations with the elastic visco-plastic self-consistent (EVPSC) model. Compared with the PTR model, the TDT model permits better curve fitting and texture prediction. The PTR model cannot fit the TD-c and ND-t flow stresses simultaneously, whereas the TDT model can. The best-fit parameters for the two models are identical at low strains but diverge somewhat at high strains. The simulated twin volume fractions are similar in the two models, but the predicted textures are significantly different. The PTR model can only reproduce the texture at strains over 5 pct in the TD-c and cannot reproduce the deformed texture in the ND-t. In contrast, the TDT model can reproduce all the experimental textures. To fit both the compression and tension curves well, strong latent hardening of the critical resolved shear stress (CRSS) for \( \{ 10\bar{1}2\} \) twinning by other twinning systems (htt) is necessary. The htt favors the twin variant with the highest Schmid factor in compression. The htt increases the CRSS for all \( \{ 10\bar{1}2\} \) twinning systems in tension, but the CRSS for the dominant twinning system remains relatively low in compression.

Notes

Acknowledgments

One of the authors (LZ) is supported by the National Natural Science Foundation of China (Grant Nos. 51571041 and 51421001) and the “111” Project (Grant No. B16007) by the Ministry of Education and the State Administration of Foreign Experts Affairs of China. XG thanks the National Natural Science Foundation of China (Grant No. 51601218) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20160235). PW is supported by the Natural Science and Engineering Research Council of Canada (Grant No. RGPIN-2016-06464).

References

  1. 1.
    1. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464 (1–2), pp. 1–7.CrossRefGoogle Scholar
  2. 2.
    2. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (4), pp. 202–05.CrossRefGoogle Scholar
  3. 3.
    3. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313–26.CrossRefGoogle Scholar
  4. 4.
    4. S.-G. Hong, S.H. Park, and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.CrossRefGoogle Scholar
  5. 5.
    5. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399 (1–2), pp. 1–12.CrossRefGoogle Scholar
  6. 6.
    6. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58 (19), pp. 6230–42.CrossRefGoogle Scholar
  7. 7.
    7. X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X. Mao: Mater. Des., 2016, vol. 98, pp. 333–43.CrossRefGoogle Scholar
  8. 8.
    8. S.-G. Hong, S.H. Park, and C.S. Lee: Scripta Mater., 2011, vol. 64 (2), pp. 145–48.CrossRefGoogle Scholar
  9. 9.
    9. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 550, pp. 138–45.CrossRefGoogle Scholar
  10. 10.
    10. B. Wang, R. Xin, G. Huang, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 534, pp. 588–93.CrossRefGoogle Scholar
  11. 11.
    11. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043–53.CrossRefGoogle Scholar
  12. 12.
    12. C. Guo, R. Xin, C. Ding, B. Song, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 609, pp. 92–101.CrossRefGoogle Scholar
  13. 13.
    13. C. Guo, R. Xin, J. Xu, B. Song, and Q. Liu: Mater. Des., 2015, vol. 76, pp. 71–76.CrossRefGoogle Scholar
  14. 14.
    14. C. Lou, X. Zhang, and Y. Ren: Mater. Charact., 2015, vol. 107, pp. 249–54.CrossRefGoogle Scholar
  15. 15.
    15. Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, and T. Richeton: Acta Mater., 2015, vol. 83, pp. 17–28.CrossRefGoogle Scholar
  16. 16.
    16. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55 (11), pp. 3899–3910.CrossRefGoogle Scholar
  17. 17.
    17. M. R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60 (4), pp. 1433–43.CrossRefGoogle Scholar
  18. 18.
    18. P.D. Wu, X.Q. Guo, H. Qiao, and D.J. Lloyd: Mater. Sci. Eng. A, 2015, vol. 625, pp. 140–45.CrossRefGoogle Scholar
  19. 19.
    19. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos: Scripta Mater., 2013, vol. 68 (1), pp. 83–86.CrossRefGoogle Scholar
  20. 20.
    20. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Scripta Mater., 2011, vol. 65 (5), pp. 424–27.CrossRefGoogle Scholar
  21. 21.
    21. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59 (20), pp. 7824–39.CrossRefGoogle Scholar
  22. 22.
    22. O. Muránsky, M.R. Barnett, D.G. Carr, S.C. Vogel, and E.C. Oliver: Acta Mater., 2010, vol. 58 (5), pp. 1503–17.CrossRefGoogle Scholar
  23. 23.
    23. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  24. 24.
    24. P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRefGoogle Scholar
  25. 25.
    25. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRefGoogle Scholar
  26. 26.
    26. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161–93.CrossRefGoogle Scholar
  27. 27.
    27. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.CrossRefGoogle Scholar
  28. 28.
    28. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.CrossRefGoogle Scholar
  29. 29.
    29. H. Qiao, P.D. Wu, X.Q. Guo, and S.R. Agnew: Scripta Mater., 2016, vol. 120, pp. 71–75.CrossRefGoogle Scholar
  30. 30.
    30. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63 (7), pp. 737–40.CrossRefGoogle Scholar
  31. 31.
    31. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462 (1–2), pp. 29–36.CrossRefGoogle Scholar
  32. 32.
    32. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids. Struct., 2010, vol. 47 (21), pp. 2905–17.CrossRefGoogle Scholar
  33. 33.
    33. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2011, vol. 528 (9), pp. 3489–95.CrossRefGoogle Scholar
  34. 34.
    34. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plast., 2015, vol. 68, pp. 1–20.CrossRefGoogle Scholar
  35. 35.
    35. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol. 25 (5), pp. 861–80CrossRefGoogle Scholar
  36. 36.
    36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Int. J. Plast., 2012, vols. 30–31, pp. 41–61.CrossRefGoogle Scholar
  37. 37.
    37. P.A. Lynch, M. Kunz, N. Tamura, and M.R. Barnett: Acta Mater., 2014, vol. 78, pp. 203–12.CrossRefGoogle Scholar
  38. 38.
    38. W. Wu, H. Qiao, K. An, X. Guo, P.D. Wu, and P.K. Liaw: Int. J. Plast., 2014, vol. 62, pp. 105–20.CrossRefGoogle Scholar
  39. 39.
    C. Ma, A. Chapuis, X.Q. Guo, L. Zhao, P.D. Wu, Q. Liu, and X. Mao: Mater. Sci. Eng. A, 2017, vol. 682, pp. 332–40.CrossRefGoogle Scholar
  40. 40.
    40. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang: Mater. Sci. Eng. A, 2012, vol. 555, pp. 93–98.CrossRefGoogle Scholar
  41. 41.
    41. T. Ebeling, C. Hartig, T. Laser, and R. Bormann: Mater. Sci. Eng. A, 2009, vol. 527 (1–2), pp. 272–80.CrossRefGoogle Scholar
  42. 42.
    42. Z.Q. Wang, A. Chapuis, and Q. Liu: Trans. Nonferr. Met. Soc., 2015, vol. 25 (11), pp. 3595–3603.CrossRefGoogle Scholar
  43. 43.
    43. H. Abdolvand and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 2240–48.CrossRefGoogle Scholar
  44. 44.
    44. L.Y. Zhao, A. Chapuis, Y. Xin, and Q. Liu: J. Alloys Compd., 2017, vol. 710, pp. 159–65.CrossRefGoogle Scholar
  45. 45.
    45. P. Chen, B. Li, D. Culbertson, and Y. Jiang: Mater. Sci. Eng. A, 2017, vol. 709, pp. 40–45.CrossRefGoogle Scholar
  46. 46.
    46. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594–612.CrossRefGoogle Scholar
  47. 47.
    47. R.A. Lebensohn, C.N. Tomé, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.CrossRefGoogle Scholar
  48. 48.
    48. A. Chapuis, Z.Q. Wang, and Q. Liu: Mater. Sci. Eng. A, 2016, vol. 655, pp. 244–50.CrossRefGoogle Scholar
  49. 49.
    49. F. Wang and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 63–86.CrossRefGoogle Scholar
  50. 50.
    50. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 248–56.CrossRefGoogle Scholar
  51. 51.
    51. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H.E. Kadiri, and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123–51.CrossRefGoogle Scholar
  52. 52.
    52. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li: Mater. Charact., 2015, vol. 108, pp. 42–50.CrossRefGoogle Scholar
  53. 53.
    53. H. Wang, P.D. Wu, K.P. Boyle, and K.W. Neale: Int. J. Solids. Struct., 2011, vol. 48, pp. 1000–10.CrossRefGoogle Scholar
  54. 54.
    54. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: Acta Mater., 2013, vol. 61 (10), pp. 3549–63.CrossRefGoogle Scholar
  55. 55.
    55. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel: Mater. Sci. Eng. A, 2010, vol. 527 (6), pp. 1383–94.CrossRefGoogle Scholar
  56. 56.
    56. J. Wang, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2010, vol. 63 (7), pp. 741–46.CrossRefGoogle Scholar
  57. 57.
    57. A. Chapuis and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 121–26CrossRefGoogle Scholar
  58. 58.
    58. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (9), pp. 666–69.CrossRefGoogle Scholar
  59. 59.
    59. H. Qiao, M.R. Barnett, and P.D. Wu: Int. J. Plast., 2016, vol. 86, pp. 70–92.CrossRefGoogle Scholar
  60. 60.
    60. A. Chapuis, Y. Xin, X. Zhou, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 612, pp. 431–39.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.School of Mechanical EngineeringYangzhou UniversityYangzhouChina
  3. 3.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyXuzhouChina
  4. 4.School of Mechanics and Civil EngineeringChina University of Mining and TechnologyXuzhouChina
  5. 5.International Joint Laboratory for Light Alloys, College of Materials Science and EngineeringChongqing UniversityChongqingChina
  6. 6.Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations