Metallurgical and Materials Transactions A

, Volume 49, Issue 12, pp 6134–6146 | Cite as

Microstructural Evolution and Microstructure–Mechanical Property Correlation in Nano/ultrafine-Grained Fe-17Cr-6Ni Austenitic Steel

  • Chengshuai Lei
  • Xiaolin Li
  • Xiangtao DengEmail author
  • Zhaodong WangEmail author


The effect of cold-rolled microstructures and subsequent reversion annealing on the microstructural characterization, reversion behavior, and microstructure–mechanical property correlation of Fe-17Cr-6Ni steel was evaluated with a heavy cold reduction of approximately 75 pct. Reversion annealing was conducted in a temperature range of 600 °C to 750 °C. The microstructures were evaluated using X-ray diffraction, optical microscope, scanning electron microscope, and transmission electron microscope. The mechanical properties were determined using tensile tests and microhardness tests. The results indicate that the reversion of lath martensite occurred in a diffusional manner over the entire temperature range, whereas that of dislocation martensite occurred in a diffusional manner at 600 °C, a combination of diffusional manner and shear manner at 650 °C, and a shear manner at 700 °C to 750 °C. The difference in the reversion conditions of lath martensite and dislocation martensite resulted in the heterogeneous microstructure made up of micrograins and nano/ultrafine grains. The tensile test results revealed that the mechanical behavior is closely related to the reversed microstructure, and can be classified into three different types, according to the engineering stress–strain curves. Moreover, a good combination of tensile strength and ductility was obtained in the samples that contained a suitable amount of retained martensite (~ 40 pct), which was due to long-range Lüders deformation.



This work was supported by the National Key Research and Development Program 2016 YFB 0300600, 2017 YFB 0305100, and the National Science Foundation of China (Grant Nos. 51474064, 51504064). The authors thank Professor R.D.K. Misra at the University of Texas at El Paso, USA, for his helpful discussions and suggestions.


  1. 1.
    H. Li and F. Ebrahimi: Adv. Mater., 2005, vol. 17, pp. 1969-1972.CrossRefGoogle Scholar
  2. 2.
    Y.M. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699-1709.CrossRefGoogle Scholar
  3. 3.
    C. Koch: Scripta Mater., 2003, vol. 49, pp. 657-662.CrossRefGoogle Scholar
  4. 4.
    T.H. Fang, W.L. Li, N.R. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-1590.CrossRefGoogle Scholar
  5. 5.
    Y.M. Wang, M.W. Chen, F.H. Zhou and E. Ma: Nature, 2002, vol. 419, pp. 912-915.CrossRefGoogle Scholar
  6. 6.
    F.K. Yan, G.Z. Liu, N.R. Tao and K. Lu: Acta Mater., 2012, vol. 60, pp. 1059-1071.CrossRefGoogle Scholar
  7. 7.
    S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev and S.L. Semiatin: Acta Mater., 2013, vol. 61, pp. 1167-1178.CrossRefGoogle Scholar
  8. 8.
    A. Rezaee, A. Najafizadeh, A. Kermanpur and M. Moallemi: Mater. Des., 2011, vol. 32, pp. 4437-4442.CrossRefGoogle Scholar
  9. 9.
    R.D.K. Misra, B.R. Kumar, M. Somani and P. Karjalainen: Scripta Mater., 2008, vol. 59, pp. 79-82.CrossRefGoogle Scholar
  10. 10.
    R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7779-7792.CrossRefGoogle Scholar
  11. 11.
    S. Lee, Y. Park and Y. Lee: Mate. Sci. Eng. A, 2009, vol. 515, pp. 32-37.CrossRefGoogle Scholar
  12. 12.
    K. Tomimura, S. Takaki, S. Tanimoto and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 721-727.CrossRefGoogle Scholar
  13. 13.
    K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-1437.CrossRefGoogle Scholar
  14. 14.
    D.M. Xu, G.Q. Li, X.L. Wan, R.D.K. Misra, X.G. Zhang, G. Xu and K.M. Wu: Mater. Sci. Eng. A, 2018, vol. 720, pp. 36-48.CrossRefGoogle Scholar
  15. 15.
    R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani and L.P. Karjalainen, Metall. Mater. Trans. A, 2010, vol. 41, pp. 2162-2174.CrossRefGoogle Scholar
  16. 16.
    R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2498-2509.CrossRefGoogle Scholar
  17. 17.
    R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3-12.CrossRefGoogle Scholar
  18. 18.
    M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra and A. Kyröläinen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729-744.CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, X.T. Jing, B.Z. Lou, F.S. Shen and F.Z. Cui: J. Mater. Sci., 1999, vol. 34, pp. 3291-3296.CrossRefGoogle Scholar
  20. 20.
    A.A. Tiamiyu, A.G. Odeshi and J.A. Szpunar: J. Mater. Eng. Perform., 2018, vol. 27, pp. 889-904.CrossRefGoogle Scholar
  21. 21.
    A. Kisko, A.S. Hamada, J. Talonen, D. Porter and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359-370.CrossRefGoogle Scholar
  22. 22.
    M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2018, Vol. 49, pp 2248–2256.CrossRefGoogle Scholar
  23. 23.
    C. Celada-Casero, B.M. Huang, M.M. Aranda, J.R. Yang and D.S. Martin: Mater. Charact., 2016, vol. 118, pp. 129-141.CrossRefGoogle Scholar
  24. 24.
    A. Järvenpää, M. Jaskari, J. Man and L.P. Karjalainen: Mater. Charact., 2017, vol. 127, pp. 12-26.CrossRefGoogle Scholar
  25. 25.
    A. Järvenpää, M. Jaskari and L. Karjalainen: (2018) Metals. doi:10.3390/met8020109.CrossRefGoogle Scholar
  26. 26.
    C. Lei, X. Deng, X. Li, Z. Wang, G. Wang and R.D.K. Misra: J. Alloy. Compd., 2016, vol. 689, pp. 718-725.CrossRefGoogle Scholar
  27. 27.
    M. Dickson: J. Appl. Crystallogr., 1969, vol. 2, pp. 176-180.CrossRefGoogle Scholar
  28. 28.
    X. Li and Z. Wang: Acta Metall. Sin., 2015, vol. 51, pp. 537-544.Google Scholar
  29. 29.
    P. Behjati, A. Kermanpur, A. Najafizadeh and H.S. Baghbadorani: Mater. Sci. Eng. A, 2014, vol. 592, pp. 77-82.CrossRefGoogle Scholar
  30. 30.
    D.L. Johannsen, A. Kyrolainen and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-2338.CrossRefGoogle Scholar
  31. 31.
    K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-1437.CrossRefGoogle Scholar
  32. 32.
    L. Kaufman, E.V. Clougherty and R.J. Weiss: Acta Metall., 1963, vol. 11, pp. 323-335.CrossRefGoogle Scholar
  33. 33.
    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu: P. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 14501-14505.CrossRefGoogle Scholar
  34. 34.
    D.L. Johannsen, A. Kyrolainen and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325.CrossRefGoogle Scholar
  35. 35.
    A. Weidner, A. Müller, A. Weiss and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68-76.CrossRefGoogle Scholar
  36. 36.
    Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang and N. Tsuji: Scripta Mater., 2018, vol. 142, pp. 88-91.CrossRefGoogle Scholar
  37. 37.
    J.W. Wyrzykowski and M.W. Grabski: Mater. Sci. Eng., 1982, vol. 56, pp. 197-200.CrossRefGoogle Scholar
  38. 38.
    C. Lei, X. Li, X. Deng, Z. Wang and G. Wang: Mater. Sci. Eng. A, 2018, vol. 709, pp. 72-81.CrossRefGoogle Scholar
  39. 39.
    H. Jafarian: Mater. Charact., 2016, vol. 114, pp. 88-96.CrossRefGoogle Scholar
  40. 40.
    C.X. Huang, G. Yang, C. Wang, Z.F. Zhang, S.D. Wu: Metall. Mater. Trans. A, 2010, vol. 42 pp. 2061-2071.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations