Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 29–34 | Cite as

Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels

  • B. C. Cameron
  • M. Koyama
  • C. C. TasanEmail author
Communication
  • 284 Downloads

Abstract

Earlier studies have shown that interlath austenite in martensitic steels can enhance hydrogen embrittlement (HE) resistance. However, the improvements were limited due to microcrack nucleation and growth. A novel microstructural design approach is investigated, based on enhancing austenite stability to reduce crack nucleation and growth. Our findings from mechanical tests, X-ray diffraction, and scanning electron microscopy reveal that this strategy is successful. However, the improvements are limited due to intrinsic microstructural heterogeneity effects.

Notes

The authors gratefully acknowledge the use of the shared experimental facilities supported in part by the MRSEC program of the National Science foundation under the award number DMR – 1419807.

References

  1. 1.
    1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.CrossRefGoogle Scholar
  2. 2.
    J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8.Google Scholar
  3. 3.
    3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.CrossRefGoogle Scholar
  4. 4.
    4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.CrossRefGoogle Scholar
  5. 5.
    5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.CrossRefGoogle Scholar
  6. 6.
    6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.CrossRefGoogle Scholar
  7. 7.
    7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.CrossRefGoogle Scholar
  8. 8.
    8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.CrossRefGoogle Scholar
  9. 9.
    R.A. McCoy and W.W. Gerberich: Metall. Trans., 1973, vol. 4, pp. 539–47.CrossRefGoogle Scholar
  10. 10.
    10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.CrossRefGoogle Scholar
  11. 11.
    11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.CrossRefGoogle Scholar
  12. 12.
    12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.CrossRefGoogle Scholar
  13. 13.
    R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.CrossRefGoogle Scholar
  14. 14.
    Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35.Google Scholar
  15. 15.
    15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.CrossRefGoogle Scholar
  16. 16.
    M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A.Google Scholar
  17. 17.
    17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.CrossRefGoogle Scholar
  18. 18.
    18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.CrossRefGoogle Scholar
  19. 19.
    19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.CrossRefGoogle Scholar
  20. 20.
    20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.CrossRefGoogle Scholar
  21. 21.
    21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRefGoogle Scholar
  22. 22.
    E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.CrossRefGoogle Scholar
  23. 23.
    23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.CrossRefGoogle Scholar
  24. 24.
    24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.CrossRefGoogle Scholar
  25. 25.
    25 W.C. Luu and J.K. Wu: Corros. Sci., 1996, vol. 38, pp. 239–45.CrossRefGoogle Scholar
  26. 26.
    26 P.A. Redhead: Vacuum, 1962, vol. 12, pp. 203–11.CrossRefGoogle Scholar
  27. 27.
    27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.CrossRefGoogle Scholar
  28. 28.
    28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.CrossRefGoogle Scholar
  29. 29.
    29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.CrossRefGoogle Scholar
  30. 30.
    30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRefGoogle Scholar
  31. 31.
    31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.CrossRefGoogle Scholar
  32. 32.
    32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.CrossRefGoogle Scholar
  33. 33.
    33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRefGoogle Scholar
  34. 34.
    34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.CrossRefGoogle Scholar
  35. 35.
    35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.CrossRefGoogle Scholar
  36. 36.
    36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations