Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 12, pp 5987–5994 | Cite as

Unified Kinetics Modeling of Isothermal Bainite Transformation in 60Si2CrA Steel

  • He Huang
  • Baoyu Wang
  • Junling Li
  • Longfei Lin
Article
  • 142 Downloads

Abstract

In this study, isothermal bainite transformation kinetics in hypo-eutectoid steel 60Si2CrA was investigated. Isothermal transformation at temperature ranging from [528 K (255 °C)] to [653 K (380 °C)] after austenitization was performed on a quenching dilatometer. Based on the dilation data, a shear bainite kinetics model was established using the internal state variable (ISV) approach. The model is coupling with bainite phase nucleation and growth, and the incubation time is characterized by the proposed normalized bainite nucleus radius and normalized radius growth rate. Material constants within the unified kinetics model were calibrated with genetic algorithm (GA)-based optimization methodology using GA toolbox in MATLAB. Furthermore, fairly close agreement between model predicted and tested data was achieved, and predicted evolution of ISVs in the model was illustrated. The proposed shear-type bainite kinetics model may be applied to other hypo-eutectoid steels.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant No. 51505026], and also was supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology.

References

  1. 1.
    T. Chen, C. Wu, A. Zhao, H. Fan, X. Li, S. Yao: Hot. Working. Technol., 2016, vol. 45, pp. 196-198.Google Scholar
  2. 2.
    T. Wang, X. Li, F. Zhang, Y. Zheng: Mater. Sci. Eng. A, 2006, vols. 438-440, pp. 1124-1127.CrossRefGoogle Scholar
  3. 3.
    A. Leiro, A. Kankanala, E. Vuorinen, B. Prakash: Wear, 2011, vol. 273, pp. 2-8.CrossRefGoogle Scholar
  4. 4.
    L. Tian, Q. Ao, S.L. Li: J. Mater. Res., 2014, vol. 29, pp. 887-895.CrossRefGoogle Scholar
  5. 5.
    Y.M. Mou and T.Y. Hsu: Metall. Trans. A, 1988, vol. 19 pp. 1695-1701.CrossRefGoogle Scholar
  6. 6.
    J.M. Howe: Mater. Sci. Eng. A, 2006, vols. 438-440, pp. 35-42.CrossRefGoogle Scholar
  7. 7.
    B.P.J. Sandvik: Metall. Trans. A, 1982, vol. 13, pp. 777-787.CrossRefGoogle Scholar
  8. 8.
    B.P.J. Sandvik: Metall. Trans. A, 1982, vol. 13, pp. 789-800.CrossRefGoogle Scholar
  9. 9.
    T. Moritani, N. Miyajima, T. Furuhara, T. Maki: Scripta. Mater., 2002, vol. 47 pp. 193-199.CrossRefGoogle Scholar
  10. 10.
    F. Caballero, M. Miller, S. Babu, C. Garciamateo: Acta. Mater., 2007, vol. 55, pp. 381-390.CrossRefGoogle Scholar
  11. 11.
    H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., Institute of Materials, Minerals and Mining, London, 2001, pp.129.Google Scholar
  12. 12.
    G. Jablonski, B. Pawlowski, M. Pietrzyk: Comput. Meth. Mater. Sci., 2012, vol. 12, pp. 51-62.Google Scholar
  13. 13.
    C. Zener: Trans. AIMME., 1946, vol. 167, pp. 550-595.Google Scholar
  14. 14.
    M. Hillert: Jernkontorets. Annaler., 1957, vol. 141, pp. 757-789.Google Scholar
  15. 15.
    R. Trivedi: Metall. Trans., 1970, vol. 1, pp. 921-927.Google Scholar
  16. 16.
    M.P. Bosze and R. Trivedi: Metall. Trans., 1974, vol. 5, pp. 511-512.CrossRefGoogle Scholar
  17. 17.
    J.S. Kirkaldy, D. Venugopalan: Phase. Transform. Ferr. Alloys., 1983, 16, pp. 125–148.Google Scholar
  18. 18.
    M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge: Metall. Mater. Trans. B, 1998, vol. 29, pp. 661-672.CrossRefGoogle Scholar
  19. 19.
    H.K.D.H. Bhadeshia: J. Phys. Coll., 1982, vol. 43, pp. C4-C443.Google Scholar
  20. 20.
    G. I. Rees and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 985-993.CrossRefGoogle Scholar
  21. 21.
    G. I. Rees and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 994-996.CrossRefGoogle Scholar
  22. 22.
    T.C. Tszeng: Mater. Sci. Eng. A, 2000, vol. 293, pp. 185-190.CrossRefGoogle Scholar
  23. 23.
    H. Matsuda and H.K.D.H. Bhadeshia: Proc. R. Soc. London A, 2004, vol. 460, pp. 1707-1722.CrossRefGoogle Scholar
  24. 24.
    M.J. Santofimia, F.G. Caballero, C. Capdevila, C. Garcia-Mateo, C.G.D. Garcia: Mater. Trans., 2006, vol. 47, pp. 2465-2472.CrossRefGoogle Scholar
  25. 25.
    S.M.C.V. Bohemen, J. Sietsma: Int. J. Mater. Res., 2008, vol. 99, pp. 739-747.CrossRefGoogle Scholar
  26. 26.
    S.M.C.V. Bohemen, Metall. Mater. Trans. A, 2010, vol. 41, pp. 285-296.CrossRefGoogle Scholar
  27. 27.
    R.P. Garrett, S. Xu, J. Lin, T.A. Dean: Int. J. Mach. Tool. Manu., 2004, vol. 44, pp. 831-837.CrossRefGoogle Scholar
  28. 28.
    H. Huang, B. Wang, X. Tang, J. Li: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5799-5804.CrossRefGoogle Scholar
  29. 29.
    M.S. Htun, S.T. Kyaw, K.T. Lwin: J. Met. Mater. Miner., 2008, vol. 18, pp. 191-197.Google Scholar
  30. 30.
    Z.C. Liu, C.J. Yuan, Y.P. Ji, H.P. Ren: Trans. Mater. Heat. Treat., 2001, vol. 32, pp. 74-79.Google Scholar
  31. 31.
    Y.P. Ji, Z.C. Liu, J. Qiao, H.P. Ren: Appl. Mech. Mater., 2014, vol. 621, pp. 50-55.CrossRefGoogle Scholar
  32. 32.
    Z.C. Liu, Y.P. Ji, H.P. Ren, C.J. Yuan, B.Y. Duan: Trans. Mater. Heat. Treat., 2013, vol. 34, pp. 176-180.Google Scholar
  33. 33.
    Z.Y. Xu, T. Y. Hsu: Trans. Mater. Heat. Treat., 2012, vol. 28, pp. 158-60.Google Scholar
  34. 34.
    J. Lin and Y. Liu: J. Mater. Process. Technol., 2003, vols. 143-144, pp. 281-285.CrossRefGoogle Scholar
  35. 35.
    X. Tang, B. Wang, Y. Huo, W. Ma, J. Zhou, H. Ji, X. Fu: Mater. Sci. Eng. A, 2016, vol. 662, pp. 54-64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • He Huang
    • 1
    • 2
  • Baoyu Wang
    • 1
    • 2
  • Junling Li
    • 1
    • 2
  • Longfei Lin
    • 1
    • 2
  1. 1.School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Metalforming LightweightBeijingChina

Personalised recommendations