Metallurgical and Materials Transactions A

, Volume 49, Issue 12, pp 5976–5986 | Cite as

Influence of Tempering Time on the Microstructure and Mechanical Properties of AISI M42 High-Speed Steel

  • Yi-Wa Luo
  • Han-Jie GuoEmail author
  • Xiao-Lin Sun
  • Jing Guo
  • Fei Wang


AISI M42 high-speed steel is prone to fracture as a result of its brittle martensitic microstructure together with abundant carbides located at the grain boundaries. In this study, a series of property tests including hardness, impact toughness, and wear loss were performed to study the effect of tempering conditions on the mechanical properties of AISI M42 high-speed steel over holding time ranging from 1 to 20 hours. The effects of the tempering time on the characteristics and growth of carbides were also investigated. The results indicated that carbides in the experimental steels were obviously coarsened when the tempering time exceeded 4 hours. The dimension of the carbides increased, while the volume fraction decreased with the increasing tempering time, and the grain sizes were significantly augmented due to the reducing of small carbides. Moreover, the dislocation density decreased with the increasing tempering time, which led to the reducing of the yield stress of high-speed steel. An appropriate holding time (4 hours) resulted in fine-scale secondary carbides and a smaller grain size, which efficiently improved the impact toughness and wear resistance simultaneously. Nevertheless, a prolonged tempering time (> 4 hours) promoted the coarsening and coalescence of carbides, which were detrimental to the impact toughness and wear resistance. Consequently, the formation of fine-scale secondary carbides is the major influential factor to improve both the wear resistance and impact toughness.



The authors acknowledge the financial supports received from the National Natural Science Foundation of China (Grant No. U1560203), and the experimental supports provided by the Central Iron & Steel Research Institute (CISRI). The helpful comments, suggestions, and encouragement from editors and anonymous reviewers are gratefully acknowledged.


  1. 1.
    Y.L. Ji, W. Zhang, X.Y. Chen and J.G. Li: Acta Metall. Sin, (Engl. Lett.), 2016, vol. 29, pp. 382-387.CrossRefGoogle Scholar
  2. 2.
    L.P. Ma, W.X. Zhao, Z.Q. Liang, X.B. Wang, L.J. Xie, L. Jiao and T.F Zhou: Mater. Sci. Eng. A, 2014, vol. 609, pp. 16-25.CrossRefGoogle Scholar
  3. 3.
    S.Z. Wei, J.H. Zhu and L.J. Xu: Mater. Sci. Eng. A, 2005, vol. 404, pp. 138-145.CrossRefGoogle Scholar
  4. 4.
    L.Z. Wu: Adv. Steels, 2011, Vol. 335, pp. 453-461.CrossRefGoogle Scholar
  5. 5.
    Y.K. Deng, J.R. Chen and S.Z. Wang: High Speed Tool Steel, Metallurgical Industry Press, Beijing, China, 2002, pp. 225-234.Google Scholar
  6. 6.
    R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic and R. Vilar: Wear, 2006, vol. 260, pp. 949-956.CrossRefGoogle Scholar
  7. 7.
    D. Bombac, M. Tercelj, M. Fazarinc and G. Kugler: Mater. Sci. Eng. A, 2017, vol. 703, pp. 438-450.CrossRefGoogle Scholar
  8. 8.
    C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim and J.S. Yang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 87-97.CrossRefGoogle Scholar
  9. 9.
    A.S. Chaus: Phys. Met. Metallogr., 2008, vol. 106, pp. 82-89.CrossRefGoogle Scholar
  10. 10.
    H.K. Moon, K.B. Lee and H. Kwon: Mater. Sci. Eng. A, 2008, vol. 474, pp. 328-334.CrossRefGoogle Scholar
  11. 11.
    A.S. Chaus, M. Bogachik and P. Uradnik: Phys. Met. Metallogr., 2011, vol. 112, pp. 470-479.CrossRefGoogle Scholar
  12. 12.
    Y.W. Luo, H.J. Guo, X.L. Sun, M.T. Mao and J. Guo: Metals, 2017, vol. 7, pp. 27-40.CrossRefGoogle Scholar
  13. 13.
    J. Guo, H.W. Qu, L.G. Liu, Y.L. Sun, Y. Zhang and Q.X. Yang: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 146-151.CrossRefGoogle Scholar
  14. 14.
    M.J. Wang, Y. Wang and F.F. Sun: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 1139-1142.CrossRefGoogle Scholar
  15. 15.
    S. Priming and H. Leitner: Thermochim. Acta, 2011, vol. 526, pp. 111-117.CrossRefGoogle Scholar
  16. 16.
    T. Furuhara, K. Kobayashi and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937-1944.CrossRefGoogle Scholar
  17. 17.
    S. Sackl, M. Zuber, H. Clemens and S. Primig: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3694-3702.CrossRefGoogle Scholar
  18. 18.
    G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang and Z.W. Liu: Mater. Sci. Eng. A, 2012, vol. 558, pp. 566-571.CrossRefGoogle Scholar
  19. 19.
    H. Chen, D. Zhao, Q.L. Wang, Y.H. Qiang and J.W. Qi: Friction, 2017, Vol. 18, pp. 1-8.Google Scholar
  20. 20.
    V. Trabadelo, S. Gimenez and I. Iturriza: Mater. Sci. Eng. A, 2009, vol. 499, pp. 360-367.CrossRefGoogle Scholar
  21. 21.
    Y.J. Kang, J.C. Oh, H.C. Lee and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2515-2525.CrossRefGoogle Scholar
  22. 22.
    V.A. Snyder, N. Akaiwa, J. Alkemper and P.W. Voorhees: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2341-2348.CrossRefGoogle Scholar
  23. 23.
    M. Petersen, A. Zangwill and C. Ratsch: Surf. Sci. 2003, vol. 536, pp. 55-60.CrossRefGoogle Scholar
  24. 24.
    A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2171-2202.CrossRefGoogle Scholar
  25. 25.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.CrossRefGoogle Scholar
  26. 26.
    C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581-91.Google Scholar
  27. 27.
    A.J. Ardell: Acta Met. 1972, vol. 20, pp. 61-71.CrossRefGoogle Scholar
  28. 28.
    D.N. Zou, Y. Han, W. Zhang and X.D. Fang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 50-54.CrossRefGoogle Scholar
  29. 29.
    M. Sauzay, B. Fournier, M. Mottot, A. Pineau and I. Monnet: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 410-414.CrossRefGoogle Scholar
  30. 30.
    W.Y. Yang and W.J. Qiang: Mechanical Behavior of Materials, Chemical Industry Press, Beijing, China, 2009, pp. 212-217.Google Scholar
  31. 31.
    B.B. He, B. Hu, H.W. Yen, G.J. Chen, Z.K. Wang, H.W. Luo and M.X. Huang: Science, 2017, vol. 357, pp. 1029-1032.CrossRefGoogle Scholar
  32. 32.
    L.J. Xu, J.D. Xing, S.Z. Wei, Y.Z. Zhang and R. Long: Mater. Sci. Eng. A, 2006, vol. 434, pp. 63-70.CrossRefGoogle Scholar
  33. 33.
    K.C. Hwang, S. Lee and H.C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 296-304.CrossRefGoogle Scholar
  34. 34.
    J.W. Park, H.C. Lee and S. Lee: Metall. Mater. Trans. A, 1999, vol. 30, pp. 399-409.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yi-Wa Luo
    • 1
    • 2
  • Han-Jie Guo
    • 1
    • 2
    Email author
  • Xiao-Lin Sun
    • 3
  • Jing Guo
    • 1
    • 2
  • Fei Wang
    • 3
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsBeijingP.R. China
  3. 3.Tianjin Cisri-Harder Materials & Technology Co. LTD, Central Iron and Steel Research Institute (CISRI)TianjinP.R. China

Personalised recommendations