Metallurgical and Materials Transactions A

, Volume 49, Issue 12, pp 6022–6033 | Cite as

In Situ Micromechanical Testing for Single Crystal Property Characterization

  • L. Borkowski
  • J. A. Sharon
  • A. StaroselskyEmail author


An in situ method to fully characterize the single crystal properties for polycrystalline alloys is developed using microscale experimental and analysis techniques. The developed method can be applied to metallic engineering alloys that do not exist in single crystal form. Thus using this technique, testing and analysis on polycrystalline samples can yield the single crystal elastic and plastic properties required as input to micro- and mesoscale computational models such as those which rely on crystal plasticity theory. Compression and shear experiments are conducted on single crystal specimens of various crystallographic orientations. Analytical and numerical analysis of the experimental results yields a set of equations that can be solved for the single crystal elastic parameters. This novel methodology is demonstrated to produce reasonable elastic property prediction results for an aerospace aluminum lithium alloy, AA2070. Details regarding the experiments and analysis are provided to facilitate application of the technique to a wide range of polycrystalline material systems and properties.



The authors are grateful for support and funding from Lightweight Innovations for Tomorrow (LIFT), operated by the American Lightweight Materials Manufacturing Innovation Institute (ALMMII). The authors also thank UTRC colleagues David Gagnon, Douglas Logan, Caitlyn Thorpe, Roy Wong, and Fred Espinosa for their assistance with specimen fabrication and testing.


  1. 1.
    E.J. Lavernia, T.S. Srivatsan and F.A. Mohamed, Journal of Materials Science 1990, vol. 25, pp. 1137-1158.CrossRefGoogle Scholar
  2. 2.
    K.T.V. Rao and R.O. Ritchie, Int. Mater. Rev. 1992, vol. 37, pp. 153-186.CrossRefGoogle Scholar
  3. 3.
    T. Dubois, Pratt, Alcoa Pioneer Use of Aluminum Fan Blades (Aviation International News, 2014).
  4. 4.
    L.B. Borkowski, J.A. Sharon and A. Staroselsky, Int. J. Comput. Methods Exp. Meas. 2018, vol. 6, pp. 635-646.Google Scholar
  5. 5.
    L.B. Borkowski and A. Staroselsky (2018) Multiscale Model for Al–Li Material Processing Simulation Under Forging Conditions. Springer, New York pp. 355.Google Scholar
  6. 6.
    A. Staroselsky and L. Anand, Journal of the Mechanics and Physics of Solids 1998, vol. 46, pp. 671-696.CrossRefGoogle Scholar
  7. 7.
    A. Staroselsky and B.N. Cassenti, International Journal of Solids and Structures 2011, vol. 48, pp. 2060-2075.CrossRefGoogle Scholar
  8. 8.
    A. Staroselsky and B. Cassenti, Mechanics of Time-Dependent Materials 2008, vol. 12, pp. 275-289.CrossRefGoogle Scholar
  9. 9.
    R.K. Kersey, A. Staroselsky, D.C. Dudzinski and M. Genest, Int. J. Fatigue 2013, vol. 55, pp. 183-193.CrossRefGoogle Scholar
  10. 10.
    M.D.S. Uchic, Paul A.; Dimiduk, Dennis M., Annual Review of Materials Research 2009, vol. 39, pp. 361-386.CrossRefGoogle Scholar
  11. 11.
    J.R. Greer and J.T.M. De Hosson, Prog. Mater Sci. 2011, vol. 56, pp. 654-724.CrossRefGoogle Scholar
  12. 12.
    D.S. Gianola and C. Eberl, JOM 2009, vol. 61, pp. 24-35.CrossRefGoogle Scholar
  13. 13.
    Q. Yu, M. Legros and A.M. Minor, MRS Bull. 2015, vol. 40, pp. 62-70.CrossRefGoogle Scholar
  14. 14.
    K.J. Hemker and W.N. Sharpe, Annual Review of Materials Research 2007, vol. 37, pp. 93-126.CrossRefGoogle Scholar
  15. 15.
    J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren and J. Michler, Mater. Today 2010, vol. 12, pp. 44-45.CrossRefGoogle Scholar
  16. 16.
    M.L.B. Palacio and B. Bhushan, Mater. Charact. 2013, vol. 78, pp. 1-20.CrossRefGoogle Scholar
  17. 17.
    J.H. Wu, W.Y. Tsai, J.C. Huang, C.H. Hsieh and G.-R. Huang, Materials Science and Engineering: A 2016, vol. 662, pp. 296-302.CrossRefGoogle Scholar
  18. 18.
    K.S. Ng and A.H.W. Ngan, Acta Mater. 2008, vol. 56, pp. 1712-1720.CrossRefGoogle Scholar
  19. 19.
    A. Kunz, S. Pathak and J.R. Greer, Acta Mater. 2011, vol. 59, pp. 4416-4424.CrossRefGoogle Scholar
  20. 20.
    C.S. Kaira, S.S. Singh, A. Kirubanandham and N. Chawla, Acta Mater. 2016, vol. 120, pp. 56-67.CrossRefGoogle Scholar
  21. 21.
    N. Malyar, J.-S. Micha, G. Dehm and C. Kirchlechner, Acta Mater. 2017, vol. 129, pp. 312-320.CrossRefGoogle Scholar
  22. 22.
    N. Malyar, J.-S. Micha, G. Dehm and C. Kirchlechner, Acta Mater. 2017, vol. 129, pp. 91-97.CrossRefGoogle Scholar
  23. 23.
    L.L. Li, Z.J. Zhang, J. Tan, C.B. Jiang, R.T. Qu, P. Zhang, J.B. Yang and Z.F. Zhang, Scientific Reports 2015, vol. 5, pp. 15631.1-15639.8.Google Scholar
  24. 24.
    N. Kheradmand, H. Vehoff and A. Barnoush, Acta Mater. 2013, vol. 61, pp. 7454-7465.CrossRefGoogle Scholar
  25. 25.
    N. Kheradmand and H. Vehoff, Adv. Eng. Mater. 2012, vol. 14, pp. 153-161.CrossRefGoogle Scholar
  26. 26.
    N. Wieczorek, G. Laplanche, J.K. Heyer, A.B. Parsa, J. Pfetzing-Micklich and G. Eggeler, Acta Mater. 2016, vol. 113, pp. 320-334.CrossRefGoogle Scholar
  27. 27.
    J. Pfetzing-Micklich, S. Brinckmann, S.R. Dey, F. Otto, A. Hartmaier and G. Eggeler, Materialwiss. Werkstofftech. 2011, vol. 42, pp. 219-223.CrossRefGoogle Scholar
  28. 28.
    J.K. Heyer, S. Brinckmann, J. Pfetzing-Micklich and G. Eggeler, Acta Mater. 2014, vol. 62, pp. 225-238.CrossRefGoogle Scholar
  29. 29.
    C. Mayr, G. Eggeler, G.A. Webster and G. Peter, Materials Science and Engineering: A 1995, vol. 199, pp. 121-130.CrossRefGoogle Scholar
  30. 30.
    C. Kirchlechner, J. Keckes, C. Motz, W. Grosinger, M.W. Kapp, J.S. Micha, O. Ulrich and G. Dehm, Acta Mater. 2011, vol. 59, pp. 5618-5626.CrossRefGoogle Scholar
  31. 31.
    C. Kirchlechner, P.J. Imrich, W. Grosinger, M.W. Kapp, J. Keckes, J.S. Micha, O. Ulrich, O. Thomas, S. Labat, C. Motz and G. Dehm, Acta Mater. 2012, vol. 60, pp. 1252-1258.CrossRefGoogle Scholar
  32. 32.
    J.J. Wortman and R.A. Evans, J. Appl. Phys. 1965, vol. 36, pp. 153-156.CrossRefGoogle Scholar
  33. 33.
    C.A. Volkert and E.T. Lilleodden, Philosophical Magazine 2006, vol. 86, pp. 5567-5579.CrossRefGoogle Scholar
  34. 34.
    M.D. Uchic and D.M. Dimiduk, Materials Science and Engineering: A 2005, vol. 400–401, pp. 268-278.CrossRefGoogle Scholar
  35. 35.
    J. Hütsch and E.T. Lilleodden, Scripta Mater. 2014, vol. 77, pp. 49-51.CrossRefGoogle Scholar
  36. 36.
    H. Zhang, B.E. Schuster, Q. Wei and K.T. Ramesh, Scripta Mater. 2006, vol. 54, pp. 181-186.CrossRefGoogle Scholar
  37. 37.
    C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider and E. Arzt, Materials Science and Engineering: A 2008, vol. 489, pp. 319-329.CrossRefGoogle Scholar
  38. 38.
    I.N. Sneddon, International Journal of Engineering Science 1965, vol. 3, pp. 47-57.CrossRefGoogle Scholar
  39. 39.
    B. Noble, S.J. Harris and K. Dinsdale, Journal of Materials Science 1982, vol. 17, pp. 461-68.CrossRefGoogle Scholar
  40. 40.
    J.E. Hatch, A. Association and A.S. Metals: Aluminum: Properties and Physical Metallurgy. (American Society for Metals, Russell 1984).Google Scholar
  41. 41.
    R.L. Fleischer, Acta Metall. 1960, vol. 8, pp. 598-604.CrossRefGoogle Scholar
  42. 42.
    R.L. Fleischer, Acta Metall. 1960, vol. 8, pp. 32-35.CrossRefGoogle Scholar
  43. 43.
    ASTM-D4255, (ASTM International, West Conshohocken, PA: 2015).Google Scholar
  44. 44.
    G. Simmons: Single Crystal Elastic Constants and Calculated Aggregate Properties. (Southern Methodist University Press, 1965).Google Scholar
  45. 45.
    H. Neilson, In Department of Materials Science and Engineering, (Case Western Reserve Universit, Cleveland 2018).Google Scholar
  46. 46.
    W.P. Mason: Physical Acoustics. 3rd ed. (Academic Press, New York 1965).Google Scholar
  47. 47.
    Smithells Metals Reference Book. 8E ed. (Elsevier Ltd., 2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations