Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5393–5401 | Cite as

Effect of Ball Burnishing Treatment on the Fatigue Behavior of 316L Stainless Steel Operating Under Anodic and Cathodic Polarization Potentials

  • Hasan YilmazEmail author
  • Recep Sadeler


Corrosion fatigue (CF) behavior of AISI 316L was investigated in a 3 pct NaCl aqueous solution at an R = − 1 stress ratio and a frequency of 60 Hz at room temperature. The test scale specimen was 7 cm2. The passive (0 mVRef), pitting (120 mVRef), and cathodic (− 1400 mVRef) polarization potentials were statically applied and recorded during CF tests until the samples were broken. The shaft material surface was treated with a ball burnishing (BB) process. By the results, the fatigue behavior of AISI 316L was affected by polarization potential and surface treatment. Under 0 mV potential charged tests for 5 × 105 cycles, BB treatment raised the CF strength of the shaft material from about 448 to 702 MPa with a percent 57 increase. Fractographic observations revealed that corrosion pits occurred during the experiments where anodic potential was applied and that transgranular surface fractures occurred in all cases.



Silver/silver chloride electrode


Ball burnishing


Corrosion fatigue


Millivolts vs reference electrode


Number of cycles to failure


Open circuit potential


Potentiodynamic scanning


Potentiostatic scanning


Stress–number of cycles to failure


  1. 1.
    P. Gilbert: Metallurgical Reviews, 1956, vol. 1, pp. 379-417.Google Scholar
  2. 2.
    P.G. Forrest: Fatigue of Metals, Pergamon Press, Oxford, 1970, pp. 220.Google Scholar
  3. 3.
    K. Tsukada, K. Minakawa and A.J. McEvily: Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1983, vol. 14, pp. 1737-42.CrossRefGoogle Scholar
  4. 4.
    M.F. Spotts: Design of Machine Elements. 4th ed., Prentice- Hall, Vancouver,WA U.S.A., 1971.Google Scholar
  5. 5.
    C.F. Arisoy, G. Başman and M.K. Şeşen: Engineering failure analysis, 2003, vol. 10, pp. 711-7.CrossRefGoogle Scholar
  6. 6.
    W. Duckworth and E. Ineson: Clean steel’, 87; 1963, The Iron and Steel Institute, London, 1968.Google Scholar
  7. 7.
    D. Bian, W. Zhou, Y. Liu, N. Li, Y. Zheng and Z. Sun: Acta biomaterialia, 2016, vol. 41, pp. 351-60.CrossRefGoogle Scholar
  8. 8.
    A. Poonguzhali, M. Pujar, C. Mallika and U.K. Mudali: JOM, 2015, vol. 67, pp. 1162-75.CrossRefGoogle Scholar
  9. 9.
    T. Bellezze, G. Roventi and R. Fratesi: Corrosion Engineering, Science and Technology, 2013, vol. 48, pp. 340-5.CrossRefGoogle Scholar
  10. 10.
    S. Lorenzi, T. Pastore, T. Bellezze and R. Fratesi: Corrosion Science, 2016, vol. 108, pp. 36-46.CrossRefGoogle Scholar
  11. 11.
    D.R. Lenard and J.G. Moores: Corrosion, 1993, vol. 49, pp. 769-75.CrossRefGoogle Scholar
  12. 12.
    J. Seok-Ki, H. Min-Su and K. Seong-Jong: Transactions of Nonferrous Metals Society of China, 2009, vol. 19, pp. 930-4.CrossRefGoogle Scholar
  13. 13.
    A. Rodríguez, L.L. de Lacalle, A. Celaya, A. Lamikiz and J. Albizuri: Surface and Coatings Technology, 2012, vol. 206, pp. 2817-24.CrossRefGoogle Scholar
  14. 14.
    R. Sadeler, S. Corak, S. Atasoy and F. Bulbul: Kovove Materialy- Metallic Materials, 2013, vol. 51, pp. 351-6.Google Scholar
  15. 15.
    A. Sova, C. Courbon, F. Valiorgue, J. Rech and P. Bertrand: Journal of Thermal Spray Technology, 2017, vol. 26, pp. 1922-34.CrossRefGoogle Scholar
  16. 16.
    N. Loh and S. Tam: Precision Engineering, 1988, vol. 10, pp. 215-20.CrossRefGoogle Scholar
  17. 17.
    M.A. Streicher: Corrosion, 1974, vol. 30, pp. 77-91.CrossRefGoogle Scholar
  18. 18.
    N. Maruyama, D. Mori, S. Hiromoto, K. Kanazawa and M. Nakamura: Corrosion Science, 2011, vol. 53, pp. 2222-7.CrossRefGoogle Scholar
  19. 19.
    R. Sadeler, M. Akbulut and S. Atasoy: Kovove Materialy, 2013, vol. 51, pp. 31-5.Google Scholar
  20. 20.
    A. Davoodi, M. Pakshir, M. Babaiee and G.R. Ebrahimi: Corrosion Science, 2011, vol. 53, pp. 399-408.CrossRefGoogle Scholar
  21. 21.
    K. Genel, M. Demirkol and M. Ürgen: International journal of fatigue, 2002, vol. 24, pp. 537-43.CrossRefGoogle Scholar
  22. 22.
    M.K. Khani and D. Dengel: Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1996, vol. 27, pp. 1333-46.CrossRefGoogle Scholar
  23. 23.
    A. Wormsen, F. Kirkemo, K.A. Macdonald, L. Reinås, A.D. Muff, E. Gulbrandsen, et al.: International Journal of Fatigue, 2017, vol. 95, pp. 168-84.CrossRefGoogle Scholar
  24. 24.
    K. Genel, M. Demirkol and T. Gülmez: Materials Science and Engineering: A, 2000, vol. 288, pp. 91-100.CrossRefGoogle Scholar
  25. 25.
    A.M. Hassan and A.S. Al-Bsharat: Wear, 1996, vol. 199, pp. 1-8.CrossRefGoogle Scholar
  26. 26.
    M. El-Axir: International Journal of Machine Tools and Manufacture, 2000, vol. 40, pp. 1603-17.CrossRefGoogle Scholar
  27. 27.
    L. Luca, S. Neagu-Ventzel and I. Marinescu: Precision Engineering, 2005, vol. 29, pp. 253-6.CrossRefGoogle Scholar
  28. 28.
    F. Klocke and J. Liermann: International Journal of Machine Tools and Manufacture, 1998, vol. 38, pp. 419-23.CrossRefGoogle Scholar
  29. 29.
    L. Wagner: Materials Science and Engineering: A, 1999, vol. 263, pp. 210-6.CrossRefGoogle Scholar
  30. 30.
    R. Avilés, J. Albizuri, A. Rodríguez and L.L. De Lacalle: International journal of fatigue, 2013, vol. 55, pp. 230-44.CrossRefGoogle Scholar
  31. 31.
    M. Abdulstaar, M. Mhaede, M. Wollmann and L. Wagner: Surface and Coatings Technology, 2014, vol. 254, pp. 244-51.CrossRefGoogle Scholar
  32. 32.
    T. Lennox: Naval Engineers Journal, 1976, vol. 88, pp. 45-53.CrossRefGoogle Scholar
  33. 33.
    Z. Begum, A. Poonguzhali, R. Basu, C. Sudha, H. Shaikh, R.S. Rao, et al.: Corrosion Science, 2011, vol. 53, pp. 1424-32.CrossRefGoogle Scholar
  34. 34.
    T. Anita, M. Pujar, H. Shaikh, R. Dayal and H. Khatak: Corrosion science, 2006, vol. 48, pp. 2689-710.CrossRefGoogle Scholar
  35. 35.
    F.L. LaQue: Marine Corrosion: Causes and Prevention. New York: Wiley, 1975.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringAtatürk UniversityErzurumTurkey

Personalised recommendations