Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5241–5245 | Cite as

Martensite Formation from Reverted Austenite at Sub-zero Celsius Temperature

  • F. NiessenEmail author
  • M. Villa
  • M. A. J. Somers


Inter-critical annealing of soft martensitic stainless steel leads to formation of fine-grained reverted austenite, which is stabilized by partitioning of Ni. Generally it is reported that reverted austenite is not affected by immersion in cryogenic liquids, such as boiling N2 and He. The present data show that reverted austenite that is apparently stable at boiling nitrogen temperature does transform isothermally to martensite during holding at 195 K. The results are explained in terms of thermally activated martensite formation.


Mikkel F. Hansen is acknowledged for providing the VSM facilities. The Danish Underground Consortium is gratefully acknowledged for the financial support to the Danish Hydrocarbon Research Center (DHRTC), which partly financed this work. Further financial support was obtained from the Danish Council for Independent Research [Grant Number: DFF-4005-00223].


  1. 1.
    A.W. Marshall and J.C.M. Farrar: Weld. World, 2001, vol. 45, pp. 19–42.Google Scholar
  2. 2.
    K. Kondo, M. Ueda, K. Ogawa, H. Hirata, H. Takabe, and Y. Miyazaki: in Supermartensitic Stainl. Steels 1999, 1999, pp. 11–18.Google Scholar
  3. 3.
    F. Niessen: Mater. Sci. Technol., 2018, vol. 0836, pp. 1–14.Google Scholar
  4. 4.
    L.M. Smith and M. Celant: in Supermartensitic Stainl. Steels 1999, 1999, pp. 66–73.Google Scholar
  5. 5.
    H.J. Niederau: Zeitschrift Des Vereins Dtsch. Ingenieure Für Maschinenbau Und Met. Eig., 1982, vol. 21, pp. 801–08.Google Scholar
  6. 6.
    M. Grounes and S. Rao: Trans. ASM, 1969, vol. 62, pp. 902–14.Google Scholar
  7. 7.
    J.W. Morris Jr.: in Encycl. Adv. Mater., H.D. McPerson, ed., Pergamon Press, Oxford, UK, 1986.Google Scholar
  8. 8.
    S. Zhang, P. Wang, D. Li, and Y. Li: Mater. Des., 2015, vol. 84, pp. 385–94.CrossRefGoogle Scholar
  9. 9.
    Y. Iwabuchi and S. Sawada: Stainl. Steel, 1982, pp. 332–54.Google Scholar
  10. 10.
    Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, and Y.Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 614–18.CrossRefGoogle Scholar
  11. 11.
    P.D. Bilmes, M Solari, and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285–96.CrossRefGoogle Scholar
  12. 12.
    H.J. Niederau: in Stainl. Steel Cast., G. Behal and A.S. Melilli, eds., ASTM, Bal Harbour, Florida, 1982, pp. 382–93.Google Scholar
  13. 13.
    F. Niessen, F.B. Grumsen, J. Hald and M.A. J. Somers: in Proc. 24th IFHTSE Congr., 2017, pp. 138–45.Google Scholar
  14. 14.
    F. Niessen, M. Villa, J. Hald, and M.A.J. Somers: Mater. Des., 2017, vol. 116, pp. 8–15.CrossRefGoogle Scholar
  15. 15.
    J. D. Escobar, J. D. Poplawsky, G. A. Faria, J. Rodriguez, J. P. Oliveira, C. A.F. Salvador, P. R. Mei, S. S. Babu, and A. J. Ramirez: Mater. Des., 2018, vol. 140, pp. 95–105.CrossRefGoogle Scholar
  16. 16.
    N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano: ISIJ Int., 2011, vol. 51, pp. 299–304.CrossRefGoogle Scholar
  17. 17.
    C. Genzel, I. Denks, and M. Klaus: Mater. Sci. Forum, 2006, vol. 524–525, pp. 193–98.CrossRefGoogle Scholar
  18. 18.
    F. Niessen, M. Villa, D. Apel, O. Keßler, M. Reich, J. Hald, and M.A.J. Somers: Mater. Sci. Forum, 2017, vol. 879, pp. 1381–86.CrossRefGoogle Scholar
  19. 19.
    M. Wiessner, E. Gamsjäger, S. van der Zwaag, and P. Angerer: Mater. Sci. Eng. A, 2017, vol. 682, pp. 117–25.CrossRefGoogle Scholar
  20. 20.
    C. Zener: AIMME, Met. Technol., 1946, pp. 550–95.Google Scholar
  21. 21.
    D. Carrouge, H.K.D.H. Bhadeshia, and P. Woollin: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 377–89.CrossRefGoogle Scholar
  22. 22.
    A. Bojack, L. Zhao, P. F. Morris, and J. Sietsma: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 5956–67.CrossRefGoogle Scholar
  23. 23.
    A. Kulmburg, F. Konrtheuer, M. Koren, O. Gründler, K. Hutterer and Kapfenberg: Berg- Und Hüttenmännische Monatshefte, 1981, vol. 123, pp. 104–08.Google Scholar
  24. 24.
    Z. Ji-Cheng and M.R. Notis: Mater. Sci. Eng. R, 1995, vol. 15, pp. 135–207.Google Scholar
  25. 25.
    M. Villa, M.F. Hansen, and M.A.J. Somers: Scr. Mater., 2017, vol. 141, pp. 129–32.CrossRefGoogle Scholar
  26. 26.
    M. Villa and M.A.J. Somers: Scr. Mater., 2018, vol. 142, pp. 46–49.CrossRefGoogle Scholar
  27. 27.
    Jae-hwa Lee, Takashi Fukuda, and Tomoyuki Kakeshita: Mater. Trans., 2008, vol. 49, pp. 1937–40.CrossRefGoogle Scholar
  28. 28.
    A Borgenstam and M Hillert: Acta Metall., 1997, vol. 45, pp. 651–62.Google Scholar
  29. 29.
    M. Villa and M.A.J. Somers: in Int. Conf. Martensitic Transform., A.P. Stebner and G.B. Olson, eds., Chicago, The Minerals, Metals and Materials Society, 2018 pp. 13–19.Google Scholar
  30. 30.
    P. Wang, S. P. Lu, N. M. Xiao, D. Z. Li, and Y. Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3210–16.CrossRefGoogle Scholar
  31. 31.
    J. Van Den Broek, M. Goldschmitz, L. Karlsson, and S. Rigdal: Svetsaren, 2001, vol. 56, pp. 42–46.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Danish Hydrocarbon Research and Technology CentreTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations