Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5382–5392 | Cite as

Understanding the High Strength and Good Ductility in LPSO-Containing Mg Alloy Using Synchrotron X-ray Diffraction

  • Jie Wang
  • Leyun WangEmail author
  • Gaoming Zhu
  • Bijin Zhou
  • Tao Ying
  • Xingmin Zhang
  • Qi Huang
  • Yao Shen
  • Xiaoqin ZengEmail author
  • Haiyan Jiang


Mg alloys containing long-period stacking-ordered (LPSO) phases often display excellent mechanical properties. The underlying mechanism is yet unclear. In this work, in situ synchrotron X-ray diffraction was employed to study tensile deformation of a Mg97Y2Zn alloy that contains 18R-type LPSO phase. From lattice strain measurement, it is found that the LPSO phase has a similar elastic modulus as Mg. After material yielding, lattice strain in the Mg phase decreased, while lattice strain in the LPSO phase increased further. By analyzing the lattice strain evolution of different Mg peaks, basal slip and deformation twinning are identified as the dominant deformation mechanisms. This finding is further confirmed by surface slip trace analysis using electron backscattered diffraction (EBSD). Additional analysis of diffraction peak broadening indicates a continuous increase of dislocation density during plastic deformation. Based on the above results, it can be concluded that the interdendritic LPSO phase behaves like a reinforcing phase that directly strengthens the material. The high tensile ductility of the material is attributed to the weak extrusion texture caused by the presence of interdendritic LPSO. In addition, small LPSO plates inside the Mg phase can serve as dislocation nucleation sites, which leads to a high work hardening rate in the material.



This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0701203) and the National Natural Science Foundation of China (Nos. 51631006, 51474149, and 51671127). Leyun Wang is also sponsored by Shanghai Pujiang Program (No 16PJ1404600). The authors thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and helps during experiments.


  1. 1.
    B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.CrossRefGoogle Scholar
  2. 2.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans., 2001, vol. 42, pp. 1172-76.CrossRefGoogle Scholar
  3. 3.
    A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi and J. Koike: J. Mater. Res., 2001, vol. 16, pp. 1894-1900.CrossRefGoogle Scholar
  4. 4.
    D. Egusa and E. Abe: Acta Mater., 2012, vol. 60, pp. 166-78.CrossRefGoogle Scholar
  5. 5.
    Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936-47.CrossRefGoogle Scholar
  6. 6.
    E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Acta Mater., 2002, vol. 50, pp. 3845-57.CrossRefGoogle Scholar
  7. 7.
    X.H. Shao, Z.Q. Yang, and X.L. Ma: Acta Mater., 2010, vol. 58, pp. 4760-71.CrossRefGoogle Scholar
  8. 8.
    K. Hagihara, N. Yokotani, and Y. Umakoshi: Intermetallics, 2010, vol. 18, pp. 267-76.CrossRefGoogle Scholar
  9. 9.
    J.K. Kim, S. Sandlöbes, and D. Raabe: Acta Mater., 2015, vol. 82, pp. 414-23.CrossRefGoogle Scholar
  10. 10.
    R. Chen, S. Sandlöbes, X.Q. Zeng, D.J. Li, S. Korte-Kerzel, and D. Raabe: Mater. Sci. Eng. A, 2017, vol. 682, pp. 354-58.CrossRefGoogle Scholar
  11. 11.
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, and Y. Umakoshi: Acta Mater., 2010, vol. 58, pp. 6282-93.CrossRefGoogle Scholar
  12. 12.
    M. Yamasaki, K. Hagihara, S.I. Inoue, J.P. Hadorn, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 2065-76.CrossRefGoogle Scholar
  13. 13.
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646-58.CrossRefGoogle Scholar
  14. 14.
    K. Hagihara, M. Yamasaki, M. Honnami, H. Izuno, M. Tane, T. Nakano, and Y. Kawamura: Philos. Mag., 2015, vol. 95, pp. 132-57.CrossRefGoogle Scholar
  15. 15.
    M. Okayasu, S. Takeuchi, M. Matsushita, N. Tada, M. Yamasaki, and Y. Kawamura: Mater. Sci. Eng. A, 2016, vol. 652, pp. 14-29.CrossRefGoogle Scholar
  16. 16.
    X.H. Shao, Z.Z. Peng, Q.Q. Jin, and X.L. Ma: Acta Mater., 2016, vol. 118, pp. 177-86.CrossRefGoogle Scholar
  17. 17.
    H. Liu, J. Bai, K. Yan, J.L. Yan, A.B. Ma, and J.H. Jiang: Mater. Des., 2016, vol. 93, pp. 9-18.CrossRefGoogle Scholar
  18. 18.
    W. Liu, J.S. Zhang, C.X. Xu, X.M. Zong, J.Q. Hao, Y. Li, and Z. Zhang: Mater. Des., 2016, vol. 110, pp. 1-9.CrossRefGoogle Scholar
  19. 19.
    P. Willmott: An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, New York, 2011.CrossRefGoogle Scholar
  20. 20.
    L.Y. Wang, M.M. Li, J. Almer, T. Bieler, and R. Barabash: Front. Mater. Sci., 2013, vol. 7, pp. 156-69.CrossRefGoogle Scholar
  21. 21.
    M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1999-2011.CrossRefGoogle Scholar
  22. 22.
    M.A. Weisser, A.D. Evans, S.V. Petegem, S.R. Holdsworth, and H.V. Swygenhoven; Acta Mater., 2011, vol. 59, pp. 4448-57.CrossRefGoogle Scholar
  23. 23.
    L.Y. Wang, M.M. Li, and J. Almer: J. Nucl. Mater., 2013, vol. 440, pp. 81-90.CrossRefGoogle Scholar
  24. 24.
    S.R. Kada, P.A. Lynch, J.A. Kimpton, and M.R. Barnett: Acta Mater., 2016, vol. 119, pp. 145-56.CrossRefGoogle Scholar
  25. 25.
    Y.B. Miao, K. Mo, Z.J. Zhou, X. Liu, K. Lan, G.M. Zhang, J. Park, J. Almer, and J.F. Stubbins: Mater. Des., 2016, vol. 111, pp. 622-30.CrossRefGoogle Scholar
  26. 26.
    G. Garces, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, and P. Adeva: Acta Mater., 2015, vol. 94, pp. 78-86.CrossRefGoogle Scholar
  27. 27.
    S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer: Acta Mater., 2006, vol. 54, pp. 549-62.CrossRefGoogle Scholar
  28. 28.
    M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic: Acta Mater., 2015, vol. 86, pp. 254-68.CrossRefGoogle Scholar
  29. 29.
    L. Lu, J.W. Huang, D. Fan, B.X. Bie, T. Sun, K. Fezzaa, X.L. Gong, and S.N. Luo: Acta Mater., 2016, vol. 120, pp. 86-94.CrossRefGoogle Scholar
  30. 30.
    K. Máthis, K. Nyilas, A. Axt, I. Dragomir-Cernatescu, T. Ungár, and P. Lukáč: Acta Mater., 2004, vol. 52, pp. 2889-94.CrossRefGoogle Scholar
  31. 31.
    T. Ungár, A.D. Stoica, G. Tichy, and X.L. Wang: Acta Mater., 2014, vol. 66, pp. 251-61.CrossRefGoogle Scholar
  32. 32.
    L.Y. Wang, M.M. Li, and J. Almer: Acta Mater., 2014, vol. 62, pp. 239-49.CrossRefGoogle Scholar
  33. 33.
    M.M. Li, L.Y. Wang, and J.D. Almer: Acta Mater., 2014, vol. 76, pp. 381-93.CrossRefGoogle Scholar
  34. 34.
    T.R. Bieler, M.A. Crimp, Y. Yang, L. Wang, P. Eisenlohr, D.E. Mason, W. Liu, and G.E. Ice: JOM, 2009, vol. 61, pp. 45-52.CrossRefGoogle Scholar
  35. 35.
    T.Y. Yang, W. Wen, G.Z. Yin, X.L. Li, M. Gao, Y.L. Gu, L. Li, Y. Liu, H. Lin, X.M. Zhang, B. Zhao, T.K. Liu, Y.G. Yang, Z. Li, X.T. Zhou, and X.Y. Gao: Nucl. Sci. Tech., 2015, vol. 26, pp. 1-5.Google Scholar
  36. 36.
    H. Okuda, T. Horiuchi, S. Hifumi, M. Yamasaki, Y. Kawamura, and S. Kimura, Metall. Mater. Trans. A, 2014, vol. 45, pp. 4780-85.CrossRefGoogle Scholar
  37. 37.
    H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313-26.CrossRefGoogle Scholar
  38. 38.
    Natl. Bur. Stand. (U. S.) Monogr. 25, 1985, Section 21, pp. 82.Google Scholar
  39. 39.
    G. Garces, P. Perez, S. Cabeza, S. Kabra, W. Gan, and P. Adeva: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5332-43.CrossRefGoogle Scholar
  40. 40.
    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University, Cambridge, 2016, pp. 381-88.Google Scholar
  41. 41.
    M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 6338-51.CrossRefGoogle Scholar
  42. 42.
    L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41, pp. 421-30.CrossRefGoogle Scholar
  43. 43.
    G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.CrossRefGoogle Scholar
  44. 44.
    T. Ungar and G. Tichy: Phys. Stat. Sol. A, 1999, vol. 171, pp. 425-34.CrossRefGoogle Scholar
  45. 45.
    Y. Wang and H. Choo: Acta Mater., 2014, vol. 81, pp. 83-97.CrossRefGoogle Scholar
  46. 46.
    C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado: Acta Mater., 2015, vol. 84, pp. 443-56.CrossRefGoogle Scholar
  47. 47.
    S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, pp. 429-39.CrossRefGoogle Scholar
  48. 48.
    Z. Huang, L. Wang, B. Zhou, T. Fischer, S. Yi, and X. Zeng: Scripta Mater., 2018, vol. 143, pp. 44-48.CrossRefGoogle Scholar
  49. 49.
    J.J. Bhattacharyya, F. Wang, N. Stanford, and S.R. Agnew: Acta Mater., 2018, vol. 146, pp. 55-62.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jie Wang
    • 1
  • Leyun Wang
    • 1
    Email author
  • Gaoming Zhu
    • 1
  • Bijin Zhou
    • 1
  • Tao Ying
    • 1
  • Xingmin Zhang
    • 2
  • Qi Huang
    • 3
  • Yao Shen
    • 3
  • Xiaoqin Zeng
    • 1
    • 3
    Email author
  • Haiyan Jiang
    • 1
  1. 1.National Engineering Research Center of Light Alloy Net FormingShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations