Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5339–5352 | Cite as

Mechanical and Microstructural Characterization of AF955 (UNS N09955) Nickel-Based Superalloy After Different Heat Treatments

  • Andrea Serafini
  • Giuliano AngellaEmail author
  • Carlo Malara
  • Maria Francesca Brunella


The mechanical and strain-hardening behaviors of the new AF955 nickel-based superalloy were investigated through two different heat treatments. The first consisted of a solubilization with a subsequent precipitation heat treatment at 746 °C for 4 hours, while the second included an additional precipitation treatment at 621 °C for 8 hours, which further increased the AF955 yield stress by about 15 pct and the ultimate stress by about 9 pct. However, through analyzing the true stress and true strain flow curves, the Considére’s stresses of AF955 after the heat treatments were similar and the strain-hardening behaviors at high stresses were surprisingly comparable. The AF955 microstructures were observed after the two different heat treatments through transmission electron microscopy. The dimensions and volume fractions of the strengthening γ″ and γ′ particles were quantified through the imaging analysis technique, finding that there were only γ″ particles in AF955 with heat treatment at 746 °C, while with the additional heat treatment at 621 °C, there was a higher total volume fraction of the γ″ + γ′ phases. The microstructure quantification allowed modeling of the different yield behaviors of the alloy after the heat treatments through the Orowan model for nondeformable particles and the weak coupled dislocation (WCD) and strong coupled dislocation models for deformable particles. The WCD model for deformable particles described the yield behaviors of AF955 very well after both heat treatments. Moreover, the deformability of the γ″ and γ′ particles also explained the comparable strain-hardening behaviors at high stresses of AF955 after the two different heat treatments. Although mechanical properties are correctly assumed to be key parameters for classifying materials, the analysis of true stress and true strain flow curves always should be performed to properly rationalize the mechanical behaviors of metallic alloys.


  1. 1.
    R.B. Bhavsar, A. Collins, and S. Silverman: Superalloys 718, 625, 706 Var. Deriv., 2001, pp. 47–55.Google Scholar
  2. 2.
    B.D. Craig, and L. Smith: Nickel Institute Technical Series No 10073, 2011, pp. 1–12.Google Scholar
  3. 3.
    3. P.R. Rhodes: Corrosion, 2001, vol. 57, pp. 923–66.CrossRefGoogle Scholar
  4. 4.
    4. L. Popoola, A. Grema, G. Latinwo, B. Gutti, and A. Balogun: Int. J. Ind. Chem., 2013, vol. 4, pp. 1–15.CrossRefGoogle Scholar
  5. 5.
    R.W. Evans, J.D. Parker, and B. Wilshire: in Recent Advances in Creep and Fracture of Engineering Materials and Structure, B. Wilshire and D.R.J. Oven, eds., Pineridge Press, United Kingdom, 1982.Google Scholar
  6. 6.
    B.F. Dyson, and M. McLean: in Creep in Structures, S. Murakami and N. Ohno, eds., Kluwer Academic Publishers, South Holland, The Netherlands, 2001.Google Scholar
  7. 7.
    M. Maldini, V. Lupinc, and G. Angella: Kov. Mater.-Metallic Mater., 2004, vol. 42, pp. 21–30.Google Scholar
  8. 8.
    8. M. Maldini, G. Angella, and V. Lupinc: Mater. Sci. Eng. A, 2007, vol. 462, p. 463.CrossRefGoogle Scholar
  9. 9.
    9. G. Angella, R. Donnini, D. Ripamonti, and M. Maldini: Mater. Sci. Forum, 2017, vol. 879, pp. 448–53.CrossRefGoogle Scholar
  10. 10.
    API Standard 6ACRA—First Edition, Age-hardened nickel-based alloys for oil and gas drilling and production equipment, API Publishing Services, Washington, DC.Google Scholar
  11. 11.
    NACE MR0175/ISO 15156-3, Petroleum and Natural Gas IndustriesMaterial for Use in H2S-Containing Environments in Oil and Gas ProductionPart 3: Cracking-Resistant CRAs (Corrosion Resistant Alloys) and Other Alloys, 2009 (Second Edition), NACE International, Houston, TX.Google Scholar
  12. 12.
    L. Foroni, C. Malara, R. Montani, and S. Gregory: Paper presented at CORROSION 2015, NACE International, Houston, TX, 2015.Google Scholar
  13. 13.
    L. Foroni, C. Malara, R. Montani, and S. Gregory: Paper presented at CORROSION 2016, NACE International, Vancouver, BC, Canada, 2016.Google Scholar
  14. 14.
    14. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier: Mater. Sci. Eng. A, 2008, vol. 486, pp. 117–22.CrossRefGoogle Scholar
  15. 15.
    15. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1992, vol. 23A, pp. 2015–28.CrossRefGoogle Scholar
  16. 16.
    A. Strondl, R. Fischer, G. Frommeyer, and A. Schneider: Mater. Sci. Eng. A, 2008, vol. 480, 138–147.CrossRefGoogle Scholar
  17. 17.
    17. G.A. Rao, M. Kumar, M. Srinivas, and D.S. Sarma: Mater. Sci. Eng. A, 2003, vol. 355, pp. 114–25.CrossRefGoogle Scholar
  18. 18.
    18. B. Dubiel, A. Kruk, E. Stepniowska, G. Cempura, D. Geiger, P. Formanek, J. Hernandez, P. Midgley, and A. Czyrska-Filemonowicz: J. Microsc., 2009, vol. 236, pp. 149–57.CrossRefGoogle Scholar
  19. 19.
    19. K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska-Sarnek, and A. Czyrska-Filemonowicz: Mater. Charact., 2015, vol. 100, pp. 74–80.CrossRefGoogle Scholar
  20. 20.
    20. P. Sarosi, G. Viswanathan, D. Whitis, and M. Mills: Superalloys 2004,TMS Publications, Warrendale, PA, 2004, pp. 989–96.CrossRefGoogle Scholar
  21. 21.
    AMS 2750E (2012–07), Pyrometry, SAE International, PA.Google Scholar
  22. 22.
    ASTM E8/E8M-15a, Standard Test Method for Tension Testing of Metallic Material, ASTM International, West Conshohocken, PA.Google Scholar
  23. 23.
    23. P.M. Kelly, A. Jostsons, R.G. Blake, and J.G. Napier: Phys. Status Solidi, 1975, vol. 31, pp. 771–80.CrossRefGoogle Scholar
  24. 24.
    24. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.CrossRefGoogle Scholar
  25. 25.
    25. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.CrossRefGoogle Scholar
  26. 26.
    26. U.F. Kocks and H. Mecking: Acta Metall., 1985, vol. 29, pp. 1865–75.Google Scholar
  27. 27.
    27. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.CrossRefGoogle Scholar
  28. 28.
    28. G. Angella, B.P. Wynne, W.M. Rainforth, and J.H. Beynon: Mater. Sci. Eng. A, 2008, vol. 475, pp. 257–67.CrossRefGoogle Scholar
  29. 29.
    29. G. Angella: Mater. Sci. Eng. A, 2012, vol. 532, pp. 381–91.CrossRefGoogle Scholar
  30. 30.
    30. G. Angella, R. Donnini, M. Maldini, and D. Ripamonti: Mater. Sci. Eng. A, 2014, vol. 594, pp. 381–88.CrossRefGoogle Scholar
  31. 31.
    31. M. Sundararaman, R. Kishore, and P. Mukhopadhyay: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 653–56.CrossRefGoogle Scholar
  32. 32.
    32. K.V.U. Praveen, G.V.S. Sastry, and V. Singh: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 65–78.CrossRefGoogle Scholar
  33. 33.
    33. Shaik Khaja, K.K. Mehta, R. Veera Babu, S. Sri Rama Devi, and A.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1140–53.CrossRefGoogle Scholar
  34. 34.
    Y. Estrin: in Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Elsevier, New York, 1996, pp. 69–106.CrossRefGoogle Scholar
  35. 35.
    35. A.J. Ardell: Metall. Trans., 1985, vol. 16, pp. 2131–65.CrossRefGoogle Scholar
  36. 36.
    36. R. Schnitzer, S. Zinner, and H. Leitner: Scripta Mater., 2010, vol. 62, pp. 286–89.CrossRefGoogle Scholar
  37. 37.
    37. R.C. Reed: The Superalloys, Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006.CrossRefGoogle Scholar
  38. 38.
    M.R. Ahmadi, M. Rath, E. Povoden-Karadeniz, S. Primig, T. Wojcik, A. Danninger, M. Stockinger, and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2017, vol. 25, Art. No. 055005.Google Scholar
  39. 39.
    39. B. Sonderegger and E. Kozeschnik: Scripta Mater., 2012, vol. 66, pp. 52–55.CrossRefGoogle Scholar
  40. 40.
    40. R. Sharghi-Moshtaghin and S. Asgar: J. Mater. Proc. Technol., 2004, vol. 147, pp. 343–50.CrossRefGoogle Scholar
  41. 41.
    A. deVaucorbeil, W.J. Poole, and C.W. Sinclair: Mater. Sci. Eng. A, 2013, vol. 582, pp. 147–54.CrossRefGoogle Scholar
  42. 42.
    42. Yung-Ta Chen, An-Chou Yeh, Ming-YenLi, and Shih-Ming Kuo: Mater. Design, 2017, vol. 119, pp. 235–43.CrossRefGoogle Scholar
  43. 43.
    43. H.F. Merrick: Metall. Trans.,1974, vol. 5, pp. 891–97.Google Scholar
  44. 44.
    44. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Acta Metall., 1988, vol. 36, pp. 847–64.CrossRefGoogle Scholar
  45. 45.
    45. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Jpn. Inst. Mater., 1986, vol. 27, pp. 656–64.CrossRefGoogle Scholar
  46. 46.
    46. H.A. Roth, C.L. Davis, and R.C. Thompson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1329–35.CrossRefGoogle Scholar
  47. 47.
    47. G. Lütjering and S. Weissman: Acta Metall., 1970, vol. 18, pp. 785–95.CrossRefGoogle Scholar
  48. 48.
    48. P.J. Gregson and H.M. Flower: Acta Metall., 1985, vol. 33, pp. 527–37.CrossRefGoogle Scholar
  49. 49.
    F.J. Humphreys, and M. Hatherly: Recrystallisation and Related Phenomena, 2nd ed., Elsevier, Boston, 2004.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Andrea Serafini
    • 1
  • Giuliano Angella
    • 2
    Email author
  • Carlo Malara
    • 3
  • Maria Francesca Brunella
    • 1
  1. 1.Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”MilanItaly
  2. 2.CNR-ICMATE Istituto di Chimica della Materia Condensata e di Tecnologie per l’EnergiaMilanItaly
  3. 3.Foroni S. p. AGorla MinoreItaly

Personalised recommendations