Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5478–5487 | Cite as

Containerless Solidification Processing and Phase-Field Simulation for Ternary Fe-Cu-Co Peritectic Alloy Under Reduced-Gravity Conditions

  • F. P. DaiEmail author
  • Y. H. Wu
  • W. L. Wang
  • B. WeiEmail author


We experimentally and theoretically investigated the rapid solidification and microstructural evolution of freely falling droplets of the ternary Fe45Cu40Co15 peritectic alloy, with the critical undercooling temperature of metastable liquid phase-separation initiation being measured to be 38 K. We found that liquid phase separation occurs when the droplet diameter ranges from 80 to 980 μm, resulting in the formation of either microscopically or macroscopically segregated microstructures. The peritectic solidification microstructure was produced when the droplet diameter either exceeded 980 μm or was below 80 μm. The dispersed morphology of the large alloy droplets possessed nonuniformly dispersive characteristics, i.e., proximity to the droplet surface is negatively associated with the size of Cu-rich globules. With the further reduction of the droplet size, the phase-separated morphology first transformed into a core–shell structure and finally displayed a homogeneously dispersed structure. Our theoretical calculations showed that the residual Stokes motion, Marangoni convection, and surface segregation are the dominant dynamic mechanisms for the phase separation and microstructural evolution under reduced-gravity conditions inside the drop tube.



This study was supported financially by the National Natural Science Foundation of China (Grant Nos. 51671161, 51371150 and 51327901) and the Natural Science Foundation Research Project of Shaanxi Province of China (Grant No. 2017JM5116).


  1. 1.
    Y. H. Wu, J. Chang, W. L. Wang, L. Hu, S. J. Yang and B. Wei, Acta Mater., 2017, vol. 129, pp. 366-377.CrossRefGoogle Scholar
  2. 2.
    F. P. Dai, W. L. Wang, Y. Ruan and B. Wei, Appl. Phys. A, 2018, vol. 124, 20.CrossRefGoogle Scholar
  3. 3.
    R. R. Mohanty, J. E. Guyer and Y. H. Sohn, J. App. Phys., 2009, vol. 106, 034912.CrossRefGoogle Scholar
  4. 4.
    T. Nishizawa and K. Ishida, Phase Diagrams of Binary Copper Alloys, New York: ASM, 1994, pp. 138.Google Scholar
  5. 5.
    F. Kohler, L. Germond, J. D. Wagnière and M. Rappaz, Acta Mater., 2009, vol. 57, pp. 56-68.CrossRefGoogle Scholar
  6. 6.
    J. Valloton, J. A. Dantzig, M. Plapp and M. Rappaz, Acta Mater., 2013, vol. 61, pp. 5549-60.CrossRefGoogle Scholar
  7. 7.
    S. B. Luo, W. L. Wang, J. Chang, Z. C. Xia and B. Wei, Acta Mater., 2014, vol. 69, pp. 355-64.CrossRefGoogle Scholar
  8. 8.
    G. Wilde and J. H. Perepezko, Acta Mater., 1999, vol. 47, pp. 3009-3021.CrossRefGoogle Scholar
  9. 9.
    I. Yamauchi, T. Irie and H. Sakaguchi, J. Alloys Compd., 2005, vol. 403, pp. 211-216.CrossRefGoogle Scholar
  10. 10.
    A. Munitz A, M. J. Kaufman and R. Abbaschian, Intermetallics, 2017, vol. 86, pp. 59-72.CrossRefGoogle Scholar
  11. 11.
    B. B. Straumal, A. Korneva, O. Kogtenkova, L. Kurmanaeva, P. Zięba, A. Wierzbicka-Miernik, S. N. Zhevnenko and B. Baretzky, J. Alloys Compd., 2014, vol. 615, pp. S183-87.CrossRefGoogle Scholar
  12. 12.
    A. Bachmaier, H. Krenn, P. Knoll, H. Aboulfadl and R. Pippan, J. Alloys Compd., 2017, vol. 725, pp. 744-749.CrossRefGoogle Scholar
  13. 13.
    H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto and A. Srivastava, J. App. Phys., 2010, vol. 108, pp. 114912.CrossRefGoogle Scholar
  14. 14.
    M. Bizjak, B. Karpe, G. Jakša and J. Kovač, Appl. Surf. Sci., 2013, vol. 277, pp. 83-87.CrossRefGoogle Scholar
  15. 15.
    S. Amini, H. Kalaantari, S. Mojgani and R. Abbaschian, Acta Mater., 2012, vol. 60, pp. 7123-7131.CrossRefGoogle Scholar
  16. 16.
    C. L. Shen, W. J. Xie and B. Wei, Phys. Rev. E, 2010, vol. 81, pp. 046305.CrossRefGoogle Scholar
  17. 17.
    T. Nishizawa and K. Ishida, Phase Diagrams of Binary Iron Alloys, New York: ASM, 1993, pp. 93-95.Google Scholar
  18. 18.
    J. K. R. Weber, C. J. Benmore, L. B. Skinner, J. Neuefeind, S. K. Tumber, G. Jennings, L. J. Santodonato, D. Jin, J. Du and J. B. Parise, J. Non-Cryst. Solids. 2014, vol. 383, pp. 49-51.CrossRefGoogle Scholar
  19. 19.
    J. J. Wall, R. Weber, J. Kim, P. K. Liaw and H. Choo, Mater. Sci. Eng. A, 2017, vol. 445, pp. 219-222.Google Scholar
  20. 20.
    H. L. Li and J. Z. Zhao, Appl. Phys. Lett., 2008, vol. 92, pp. 241902.CrossRefGoogle Scholar
  21. 21.
    L. J. Swartzendruber, Phase Diagrams of Binary Copper Alloys, New York: ASM, 1994, pp. 167-168.Google Scholar
  22. 22.
    Y. H. Wu, W. L. Wang, Z. C. Xia and B. Wei, Comp. Mater. Sci., 2015, vol. 103, pp. 179-188.CrossRefGoogle Scholar
  23. 23.
    N. O. Young, J. S. Goldstein and M. J. Block, J. Fluid Mech., 2006, vol. 6, pp. 350-356.CrossRefGoogle Scholar
  24. 24.
    J. R. Rogers and R. H. Davis, Metall. Trans. A, 1990, vol. 21, pp. 59-68.CrossRefGoogle Scholar
  25. 25.
    Y. H. Wu, W. L. Wang, N. Yan and B. Wei, Phys. Rev. E, 2017, vol. 95, pp. 052111-1~15.Google Scholar
  26. 26.
    C. J. Smithells, Metals Reference Book, sixth ed., Butterworth, London, 1984.Google Scholar
  27. 27.
    Y. Ruan, A. Mohajerani and M. Dao, Sci. Reports, 2016, vol. 6, pp. 31684CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations